base.py 5.89 KB
Newer Older
rusty1s's avatar
rusty1s committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
from typing import Optional, Callable

import warnings

import torch
from torch import Tensor
from torch_sparse import SparseTensor

from scaling_gnns.history2 import History
from scaling_gnns.pool import AsyncIOPool


class ScalableGNN(torch.nn.Module):
    def __init__(self, num_nodes: int, hidden_channels: int, num_layers: int,
                 pool_size: Optional[int] = None,
                 buffer_size: Optional[int] = None, device=None):
        super(ScalableGNN, self).__init__()

        self.num_nodes = num_nodes
        self.hidden_channels = hidden_channels
        self.num_layers = num_layers
        self.pool_size = num_layers if pool_size is None else pool_size
        self.buffer_size = buffer_size

        self.histories = torch.nn.ModuleList([
            History(num_nodes, hidden_channels, device)
            for _ in range(num_layers - 1)
        ])

        self.pool = None
        self._async = False
        self.__out__ = None

    @property
    def emb_device(self):
        return self.histories[0].emb.device

    @property
    def device(self):
        return self.histories[0]._device

    @property
    def _out(self):
        if self.__out__ is None:
            self.__out__ = torch.empty(self.num_nodes, self.out_channels,
                                       pin_memory=True)
        return self.__out__

    def _apply(self, fn: Callable) -> None:
        super(ScalableGNN, self)._apply(fn)
        if (str(self.emb_device) == 'cpu' and str(self.device)[:4] == 'cuda'
                and self.pool_size is not None
                and self.buffer_size is not None):
            self.pool = AsyncIOPool(self.pool_size, self.buffer_size,
                                    self.histories[0].embedding_dim)
            self.pool.to(self.device)
        return self

    def reset_parameters(self):
        for history in self.histories:
            history.reset_parameters()

    def __call__(self, x: Optional[Tensor] = None,
                 adj_t: Optional[SparseTensor] = None,
                 batch_size: Optional[int] = None,
                 n_id: Optional[Tensor] = None,
                 offset: Optional[Tensor] = None,
                 count: Optional[Tensor] = None, loader=None,
                 **kwargs) -> Tensor:

        if loader is not None:
            return self.mini_inference(loader)

        self._async = (self.pool is not None and batch_size is not None
                       and n_id is not None and offset is not None
                       and count is not None)

        if batch_size is not None and not self._async:
            warnings.warn('Asynchronous I/O disabled, although history and '
                          'model sit on different devices.')

        if self._async:
            for hist in self.histories:
                self.pool.async_pull(hist.emb, None, None, n_id[batch_size:])

        out = self.forward(x=x, adj_t=adj_t, batch_size=batch_size, n_id=n_id,
                           offset=offset, count=count, **kwargs)

        if self._async:
            for hist in self.histories:
                self.pool.synchronize_push()

        self._async = False

        return out

    def push_and_pull(self, history, x: Tensor,
                      batch_size: Optional[int] = None,
                      n_id: Optional[Tensor] = None,
                      offset: Optional[Tensor] = None,
                      count: Optional[Tensor] = None) -> Tensor:

        if n_id is None and x.size(0) != self.num_nodes:
            return x  # Do nothing...

        if n_id is None and x.size(0) == self.num_nodes:
            history.push(x)
            return x

        assert n_id is not None

        if batch_size is None:
            history.push(x, n_id)
            return x

        if not self._async:
            history.push(x[:batch_size], n_id[:batch_size], offset, count)
            h = history.pull(n_id[batch_size:])
            return torch.cat([x[:batch_size], h], dim=0)

        out = self.pool.synchronize_pull()[:n_id.numel() - batch_size]
        self.pool.async_push(x[:batch_size], offset, count, history.emb)
        out = torch.cat([x[:batch_size], out], dim=0)
        self.pool.free_pull()
        return out

    @torch.no_grad()
    def mini_inference(self, loader) -> Tensor:
        loader = [data + ({}, ) for data in loader]

        for batch, batch_size, n_id, offset, count, state in loader:
            x = batch.x.to(self.device)
            adj_t = batch.adj_t.to(self.device)
            out = self.forward_layer(0, x, adj_t, state)[:batch_size]
            self.pool.async_push(out, offset, count, self.histories[0].emb)
        self.pool.synchronize_push()

        for i in range(1, len(self.histories)):
            for _, batch_size, n_id, offset, count, _ in loader:
                self.pool.async_pull(self.histories[i - 1].emb, offset, count,
                                     n_id[batch_size:])

            for batch, batch_size, n_id, offset, count, state in loader:
                adj_t = batch.adj_t.to(self.device)
                x = self.pool.synchronize_pull()[:n_id.numel()]
                out = self.forward_layer(i, x, adj_t, state)[:batch_size]
                self.pool.async_push(out, offset, count, self.histories[i].emb)
                self.pool.free_pull()
            self.pool.synchronize_push()

        for _, batch_size, n_id, offset, count, _ in loader:
            self.pool.async_pull(self.histories[-1].emb, offset, count,
                                 n_id[batch_size:])

        for batch, batch_size, n_id, offset, count, state in loader:
            adj_t = batch.adj_t.to(self.device)
            x = self.pool.synchronize_pull()[:n_id.numel()]
            out = self.forward_layer(self.num_layers - 1, x, adj_t,
                                     state)[:batch_size]
            self.pool.async_push(out, offset, count, self._out)
            self.pool.free_pull()
        self.pool.synchronize_push()

        return self._out