llama.go 19 KB
Newer Older
1
2
3
package llama

/*
Michael Yang's avatar
Michael Yang committed
4
5
6
7
8
9
10
#cgo CFLAGS: -std=c11
#cgo CXXFLAGS: -std=c++17
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/examples/llava
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
#cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
11
12

#include <stdlib.h>
Michael Yang's avatar
Michael Yang committed
13
#include "ggml.h"
14
15
16
#include "llama.h"
#include "clip.h"
#include "llava.h"
17
#include "gguf.h"
Michael Yang's avatar
Michael Yang committed
18

19
#include "mllama.h"
20
21
#include "sampling_ext.h"

22
23
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
24
25
26
27
*/
import "C"

import (
28
	"context"
29
30
31
	_ "embed"
	"errors"
	"fmt"
32
	"log/slog"
33
	"os"
34
35
	"runtime"
	"runtime/cgo"
Jesse Gross's avatar
Jesse Gross committed
36
	"slices"
37
38
	"strings"
	"unsafe"
Michael Yang's avatar
Michael Yang committed
39
40
41
42

	_ "github.com/ollama/ollama/llama/llama.cpp/common"
	_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
	_ "github.com/ollama/ollama/llama/llama.cpp/src"
43
	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
44
45
)

46
47
48
49
50
51
52
53
54
55
56
57
func init() {
	C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
}

//export llamaLog
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
	// slog levels zeros INFO and are multiples of 4
	if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
		fmt.Fprint(os.Stderr, C.GoString(text))
	}
}

58
func BackendInit() {
Michael Yang's avatar
Michael Yang committed
59
	ggml.OnceLoad()
60
61
62
	C.llama_backend_init()
}

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
func GetModelArch(modelPath string) (string, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))

	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load model file")
	}
	defer C.gguf_free(gguf_ctx)

	key := C.CString("general.architecture")
	defer C.free(unsafe.Pointer(key))
	arch_index := C.gguf_find_key(gguf_ctx, key)
	if int(arch_index) < 0 {
		return "", errors.New("unknown model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

85
86
87
88
type ContextParams struct {
	c C.struct_llama_context_params
}

89
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
90
91
92
93
94
95
96
97
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
98
99
100
	params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
	params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

101
102
103
	return ContextParams{c: params}
}

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
// kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
func kvCacheTypeFromStr(s string) C.enum_ggml_type {
	if s == "" {
		return C.GGML_TYPE_F16
	}

	switch s {
	case "q8_0":
		return C.GGML_TYPE_Q8_0
	case "q4_0":
		return C.GGML_TYPE_Q4_0
	default:
		return C.GGML_TYPE_F16
	}
}

120
121
122
123
124
type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

125
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
126
127
128
129
130
131
132
133
134
135
136
137
138

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
139
		return ErrKvCacheFull
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
	C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
	return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
	C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}

161
162
163
164
165
166
167
168
func (c *Context) KvCacheClear() {
	C.llama_kv_cache_clear(c.c)
}

func (c *Context) KvCacheDefrag() {
	C.llama_kv_cache_defrag(c.c)
}

169
170
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
171
172
	e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if e == nil {
173
174
175
		return nil
	}

176
177
178
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
179
180
181
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
182
183
	e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if e == nil {
184
185
186
		return nil
	}

187
188
189
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	UseMlock     bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

210
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.use_mlock = C.bool(params.UseMlock)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

240
	m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
Jesse Gross's avatar
Jesse Gross committed
241
	if m.c == nil {
242
243
244
245
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
246
247
}

248
249
250
251
252
253
254
255
256
257
258
259
260
261
func LoadVocabFromFile(path string) (*Vocab, error) {
	mp := C.CString(path)
	defer C.free(unsafe.Pointer(mp))
	v := Vocab{c: C.llama_load_vocab_from_file(mp)}
	if v.c == nil {
		return nil, fmt.Errorf("unable to load vocab: %s", path)
	}
	return &v, nil
}

func FreeVocab(vocab *Vocab) {
	C.llama_free_vocab(vocab.c)
}

262
func FreeModel(model *Model) {
263
	C.llama_model_free(model.c)
264
265
}

266
267
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
268
		c:          C.llama_init_from_model(model.c, params.c),
269
270
		numThreads: int(params.c.n_threads),
	}
Jesse Gross's avatar
Jesse Gross committed
271
	if c.c == nil {
272
273
274
275
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
276
277
278
}

func (m *Model) NumVocab() int {
279
	return int(C.llama_vocab_n_tokens(m.Vocab()))
280
281
282
}

func (m *Model) TokenIsEog(token int) bool {
283
	return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
284
285
286
}

func (m *Model) AddBOSToken() bool {
287
	return bool(C.llama_vocab_get_add_bos(m.Vocab()))
288
289
290
291
292
293
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

294
	loraAdapter := C.llama_adapter_lora_init(m.c, cLoraPath)
Jesse Gross's avatar
Jesse Gross committed
295
296
297
	if loraAdapter == nil {
		return errors.New("unable to load lora")
	}
298
299
300

	err := -1
	if loraAdapter != nil {
301
		err = int(C.llama_set_adapter_lora(context.c, loraAdapter, C.float(scale)))
302
303
304
305
306
307
308
309
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

310
311
312
313
type Vocab struct {
	c *C.struct_llama_vocab
}

314
315
316
317
func (m *Model) Vocab() *C.struct_llama_vocab {
	return C.llama_model_get_vocab(m.c)
}

318
319
320
type Batch struct {
	c         C.struct_llama_batch
	batchSize int
321
	maxSeq    int
322
323
324
	embedSize int
}

325
326
327
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
Jesse Gross's avatar
Jesse Gross committed
328
329
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
	b := Batch{
330
331
332
333
		c:         C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
		batchSize: batchSize,
		maxSeq:    maxSeq,
		embedSize: embedSize,
334
	}
Jesse Gross's avatar
Jesse Gross committed
335
336
337
338
339
340
341
342
343
344
345
346

	// Check to see if any of the allocations in llama_batch_init() failed
	nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
		b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
		slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)

	if nilPointer {
		C.llama_batch_free(b.c)
		return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
	}

	return &b, nil
347
348
}

349
350
351
352
353
354
355
356
func (b *Batch) Size() int {
	return b.batchSize
}

func (b *Batch) allocSize() int {
	return b.batchSize * b.maxSeq
}

357
358
359
360
361
362
363
364
365
366
367
368
func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
369
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
370
	if !b.IsEmbedding() {
371
		unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
372
	} else {
373
		copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
374
	}
375
376
	unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
377
378

	for i, s := range seqIds {
379
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
380
381
382
	}

	if logits {
383
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
384
385
	} else {
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
408
		m.Vocab(),
409
410
411
412
413
414
415
416
417
418
419
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
420
			m.Vocab(),
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
438
		m.Vocab(),
439
440
441
442
443
444
445
446
447
448
449
450
451
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
452
			m.Vocab(),
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
474
	return int(C.llama_model_n_embd(m.c))
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
}

func Quantize(infile, outfile string, ftype uint32) error {
	cinfile := C.CString(infile)
	defer C.free(unsafe.Pointer(cinfile))

	coutfile := C.CString(outfile)
	defer C.free(unsafe.Pointer(coutfile))

	params := C.llama_model_quantize_default_params()
	params.nthread = -1
	params.ftype = ftype

	if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
		return fmt.Errorf("llama_model_quantize: %d", rc)
	}

	return nil
}

495
// vision processing
496
type ClipContext struct {
497
	c *C.struct_clip_ctx
498
499
}

500
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
501
502
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
503
	c := C.clip_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
504
505
506
	if c == nil {
		return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
	}
507

508
509
510
511
	projEmbedSize := int(C.clip_n_mmproj_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
512
513
	}

514
	return &ClipContext{c: c}, nil
515
516
517
}

func (c *ClipContext) Free() {
518
	C.clip_free(c.c)
519
520
}

Jesse Gross's avatar
Jesse Gross committed
521
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
522
	l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
Jesse Gross's avatar
Jesse Gross committed
523
524
525
	if l == nil {
		return nil, errors.New("unable to make llava embedding from image")
	}
526

527
	numTokens := int(l.n_image_pos)
528
529
	numEmbed := llamaContext.Model().NEmbd()

530
	s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
531
532
533
534
535
536
537
538
539

	embed := make([][]float32, numTokens)
	rows := make([]float32, len(s))
	copy(rows, s)

	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

540
	C.llava_image_embed_free(l)
541

Jesse Gross's avatar
Jesse Gross committed
542
	return embed, nil
543
544
}

545
546
547
548
549
550
551
552
type MllamaContext struct {
	c *C.struct_mllama_ctx
}

func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
	c := C.mllama_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
553
554
555
	if c == nil {
		return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
	}
556
557
558
559
560
561
562
563
564
565
566
567
568
569

	projEmbedSize := int(C.mllama_n_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
	}

	return &MllamaContext{c: c}, nil
}

func (m *MllamaContext) Free() {
	C.mllama_free(m.c)
}

Jesse Gross's avatar
Jesse Gross committed
570
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
571
572
573
	img := C.mllama_image_init()
	defer C.mllama_image_free(img)

Jesse Gross's avatar
Jesse Gross committed
574
575
576
577
	ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
	if !ok {
		return nil, errors.New("unable to load mllama image data")
	}
578

579
	rows := make([]float32, m.EmbedSize(llamaContext))
Jesse Gross's avatar
Jesse Gross committed
580
581
582
583
	ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
	if !ok {
		return nil, errors.New("unable to make mllama embedding from image")
	}
584

585
586
	embed := make([][]float32, 1)
	embed[0] = rows
587

Jesse Gross's avatar
Jesse Gross committed
588
	return embed, nil
589
590
}

591
592
593
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
	numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
	numEmbed := llamaContext.Model().NEmbd()
594

595
596
	return numTokens * numEmbed
}
597

598
599
func (c *Context) SetCrossAttention(state bool) {
	C.llama_set_cross_attention(c.c, C.bool(state))
600
601
}

602
603
604
605
func (c *Context) Synchronize() {
	C.llama_synchronize(c.c)
}

606
607
608
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
609
	c *C.struct_common_sampler
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	Mirostat       int
	MirostatTau    float32
	MirostatEta    float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

Jesse Gross's avatar
Jesse Gross committed
630
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
631
	var cparams C.struct_common_sampler_cparams
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
	cparams.penalty_present = C.float(params.PenaltyFreq)
	cparams.mirostat = C.int32_t(params.Mirostat)
	cparams.mirostat_tau = C.float(params.MirostatTau)
	cparams.mirostat_eta = C.float(params.MirostatEta)
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
650
	context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
Jesse Gross's avatar
Jesse Gross committed
651
652
653
654
	if context.c == nil {
		return nil, errors.New("unable to create sampling context")
	}

655
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
656

Jesse Gross's avatar
Jesse Gross committed
657
	return context, nil
658
659
660
}

func (s *SamplingContext) Reset() {
661
	C.common_sampler_creset(s.c)
662
663
}

664
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
665
	return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
666
667
}

668
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
669
	C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
670
}
671

672
673
674
675
// SchemaToGrammar converts the provided JSON schema to a grammar. It returns
// nil if the provided schema is invalid JSON or an invalid JSON schema.
func SchemaToGrammar(schema []byte) []byte {
	cStr := C.CString(string(schema))
676
677
678
679
680
681
682
	defer C.free(unsafe.Pointer(cStr))

	// Allocate buffer for grammar output with reasonable size
	const maxLen = 32768 // 32KB
	buf := make([]byte, maxLen)

	// Call C function to convert schema to grammar
683
684
685
686
	n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
	if n == 0 {
		// preserve nil
		return nil
687
	}
688
	return buf[:n]
689
}
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739

type Sampler struct {
	c *C.struct_llama_sampler
}

func NewGrammarSampler(vocab *Vocab, grammar string) *Sampler {
	cGrammar := C.CString(grammar)
	cRoot := C.CString("root")
	defer C.free(unsafe.Pointer(cGrammar))
	defer C.free(unsafe.Pointer(cRoot))

	sampler := &Sampler{c: C.llama_sampler_init_grammar(vocab.c, cGrammar, cRoot)}

	return sampler
}

func (s *Sampler) Accept(token int32) {
	C.llama_sampler_accept(s.c, C.llama_token(token))
}

type TokenData struct {
	Id    int32
	Logit float32
}

func (s *Sampler) Apply(tokens []TokenData) {
	tds := make([]C.struct_llama_token_data, len(tokens))
	for i, token := range tokens {
		tds[i] = C.struct_llama_token_data{
			id:    C.int32_t(token.Id),
			logit: C.float(token.Logit),
			p:     C.float(0.0),
		}
	}
	tda := &C.llama_token_data_array{
		data:     (*C.struct_llama_token_data)(unsafe.Pointer(&tds[0])),
		size:     C.size_t(len(tokens)),
		selected: C.int64_t(-1),
		sorted:   C.bool(false),
	}

	var pinner runtime.Pinner
	pinner.Pin(&tds[0])
	defer pinner.Unpin()

	C.llama_sampler_apply(s.c, tda)
	for i := range tokens {
		tokens[i].Logit = float32(tds[i].logit)
	}
}