llama.go 18 KB
Newer Older
1
2
3
package llama

/*
Michael Yang's avatar
Michael Yang committed
4
5
6
7
8
9
10
#cgo CFLAGS: -std=c11
#cgo CXXFLAGS: -std=c++17
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/include
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/common
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/examples/llava
#cgo CPPFLAGS: -I${SRCDIR}/llama.cpp/src
#cgo CPPFLAGS: -I${SRCDIR}/../ml/backend/ggml/ggml/include
11
12

#include <stdlib.h>
Michael Yang's avatar
Michael Yang committed
13
#include "ggml.h"
14
15
16
#include "llama.h"
#include "clip.h"
#include "llava.h"
17
#include "gguf.h"
Michael Yang's avatar
Michael Yang committed
18

19
#include "mllama.h"
20
21
#include "sampling_ext.h"

22
23
extern bool llamaProgressCallback(float progress, void *user_data);
extern void llamaLog(int level, char* text, void* user_data);
24
25
26
27
28
29
30
31
32
33
34

typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER;
COMPILER inline get_compiler() {
#if defined(__clang__)
	return COMP_CLANG;
#elif defined(__GNUC__)
	return COMP_GCC;
#else
	return UNKNOWN_COMPILER;
#endif
}
35

36
37
38
39
*/
import "C"

import (
40
	"context"
41
42
43
	_ "embed"
	"errors"
	"fmt"
44
	"log/slog"
45
	"os"
46
47
	"runtime"
	"runtime/cgo"
Jesse Gross's avatar
Jesse Gross committed
48
	"slices"
49
50
	"strings"
	"unsafe"
Michael Yang's avatar
Michael Yang committed
51
52
53
54

	_ "github.com/ollama/ollama/llama/llama.cpp/common"
	_ "github.com/ollama/ollama/llama/llama.cpp/examples/llava"
	_ "github.com/ollama/ollama/llama/llama.cpp/src"
55
	ggml "github.com/ollama/ollama/ml/backend/ggml/ggml/src"
56
57
)

58
59
60
61
62
63
64
65
66
67
68
69
func init() {
	C.llama_log_set(C.ggml_log_callback(C.llamaLog), nil)
}

//export llamaLog
func llamaLog(level C.int, text *C.char, _ unsafe.Pointer) {
	// slog levels zeros INFO and are multiples of 4
	if slog.Default().Enabled(context.TODO(), slog.Level(int(level-C.GGML_LOG_LEVEL_INFO)*4)) {
		fmt.Fprint(os.Stderr, C.GoString(text))
	}
}

70
func BackendInit() {
Michael Yang's avatar
Michael Yang committed
71
	ggml.OnceLoad()
72
73
74
75
	C.llama_backend_init()
}

func PrintSystemInfo() string {
76
77
78
79
80
81
82
83
84
85
	var compiler string
	switch C.get_compiler() {
	case C.COMP_UNKNOWN:
		compiler = "cgo(unknown_compiler)"
	case C.COMP_GCC:
		compiler = "cgo(gcc)"
	case C.COMP_CLANG:
		compiler = "cgo(clang)"
	}
	return C.GoString(C.llama_print_system_info()) + compiler
86
87
}

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
func GetModelArch(modelPath string) (string, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))

	gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)})
	if gguf_ctx == nil {
		return "", errors.New("unable to load model file")
	}
	defer C.gguf_free(gguf_ctx)

	key := C.CString("general.architecture")
	defer C.free(unsafe.Pointer(key))
	arch_index := C.gguf_find_key(gguf_ctx, key)
	if int(arch_index) < 0 {
		return "", errors.New("unknown model architecture")
	}

	arch := C.gguf_get_val_str(gguf_ctx, arch_index)

	return C.GoString(arch), nil
}

110
111
112
113
type ContextParams struct {
	c C.struct_llama_context_params
}

114
func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool, kvCacheType string) ContextParams {
115
116
117
118
119
120
121
122
	params := C.llama_context_default_params()
	params.n_ctx = C.uint(numCtx)
	params.n_batch = C.uint(batchSize)
	params.n_seq_max = C.uint(numSeqMax)
	params.n_threads = C.int(threads)
	params.n_threads_batch = params.n_threads
	params.embeddings = C.bool(true)
	params.flash_attn = C.bool(flashAttention)
123
124
125
	params.type_k = kvCacheTypeFromStr(strings.ToLower(kvCacheType))
	params.type_v = kvCacheTypeFromStr(strings.ToLower(kvCacheType))

126
127
128
	return ContextParams{c: params}
}

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
// kvCacheTypeFromStr converts a string cache type to the corresponding GGML type value
func kvCacheTypeFromStr(s string) C.enum_ggml_type {
	if s == "" {
		return C.GGML_TYPE_F16
	}

	switch s {
	case "q8_0":
		return C.GGML_TYPE_Q8_0
	case "q4_0":
		return C.GGML_TYPE_Q4_0
	default:
		return C.GGML_TYPE_F16
	}
}

145
146
147
148
149
type Context struct {
	c          *C.struct_llama_context
	numThreads int
}

150
var ErrKvCacheFull = errors.New("could not find a kv cache slot")
151
152
153
154
155
156
157
158
159
160
161
162
163

func (c *Context) Decode(batch *Batch) error {
	// Positive return values does not mean a fatal error, but rather a warning.
	//   0 - success
	//   1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
	// < 0 - error
	code := int(C.llama_decode(c.c, batch.c))

	if code < 0 {
		return fmt.Errorf("llama_decode failed with code %d", code)
	}

	if code > 0 {
164
		return ErrKvCacheFull
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
	}

	return nil
}

func (c *Context) Model() *Model {
	return &Model{c: C.llama_get_model(c.c)}
}

func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) {
	C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta))
}

func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool {
	return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1)))
}

func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) {
	C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1))
}

186
187
188
189
190
191
192
193
func (c *Context) KvCacheClear() {
	C.llama_kv_cache_clear(c.c)
}

func (c *Context) KvCacheDefrag() {
	C.llama_kv_cache_defrag(c.c)
}

194
195
// Get the embeddings for a sequence id
func (c *Context) GetEmbeddingsSeq(seqId int) []float32 {
196
197
	e := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId)))
	if e == nil {
198
199
200
		return nil
	}

201
202
203
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
204
205
206
}

func (c *Context) GetEmbeddingsIth(i int) []float32 {
207
208
	e := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i)))
	if e == nil {
209
210
211
		return nil
	}

212
213
214
	embeddings := make([]float32, c.Model().NEmbd())
	_ = copy(embeddings, unsafe.Slice((*float32)(e), c.Model().NEmbd()))
	return embeddings
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
}

type ModelParams struct {
	NumGpuLayers int
	MainGpu      int
	UseMmap      bool
	UseMlock     bool
	TensorSplit  []float32
	Progress     func(float32)
	VocabOnly    bool
}

//export llamaProgressCallback
func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool {
	handle := *(*cgo.Handle)(userData)
	callback := handle.Value().(func(float32))
	callback(float32(progress))
	return true
}

235
func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) {
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
	cparams := C.llama_model_default_params()
	cparams.n_gpu_layers = C.int(params.NumGpuLayers)
	cparams.main_gpu = C.int32_t(params.MainGpu)
	cparams.use_mmap = C.bool(params.UseMmap)
	cparams.use_mlock = C.bool(params.UseMlock)
	cparams.vocab_only = C.bool(params.VocabOnly)

	if len(params.TensorSplit) > 0 {
		tensorSplitData := &params.TensorSplit[0]

		var tensorSplitPin runtime.Pinner
		tensorSplitPin.Pin(tensorSplitData)
		defer tensorSplitPin.Unpin()

		cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData))
	}

	if params.Progress != nil {
		handle := cgo.NewHandle(params.Progress)
		defer handle.Delete()

		var handlePin runtime.Pinner
		handlePin.Pin(&handle)
		defer handlePin.Unpin()

		cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback)
		cparams.progress_callback_user_data = unsafe.Pointer(&handle)
	}

265
	m := Model{c: C.llama_model_load_from_file(C.CString(modelPath), cparams)}
Jesse Gross's avatar
Jesse Gross committed
266
	if m.c == nil {
267
268
269
270
		return nil, fmt.Errorf("unable to load model: %s", modelPath)
	}

	return &m, nil
271
272
273
}

func FreeModel(model *Model) {
274
	C.llama_model_free(model.c)
275
276
}

277
278
func NewContextWithModel(model *Model, params ContextParams) (*Context, error) {
	c := Context{
279
		c:          C.llama_init_from_model(model.c, params.c),
280
281
		numThreads: int(params.c.n_threads),
	}
Jesse Gross's avatar
Jesse Gross committed
282
	if c.c == nil {
283
284
285
286
		return nil, errors.New("unable to create llama context")
	}

	return &c, nil
287
288
289
}

func (m *Model) NumVocab() int {
290
	return int(C.llama_vocab_n_tokens(m.Vocab()))
291
292
293
}

func (m *Model) TokenIsEog(token int) bool {
294
	return bool(C.llama_vocab_is_eog(m.Vocab(), C.llama_token(token)))
295
296
297
}

func (m *Model) AddBOSToken() bool {
298
	return bool(C.llama_vocab_get_add_bos(m.Vocab()))
299
300
301
302
303
304
}

func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error {
	cLoraPath := C.CString(loraPath)
	defer C.free(unsafe.Pointer(cLoraPath))

305
	loraAdapter := C.llama_adapter_lora_init(m.c, cLoraPath)
Jesse Gross's avatar
Jesse Gross committed
306
307
308
	if loraAdapter == nil {
		return errors.New("unable to load lora")
	}
309
310
311

	err := -1
	if loraAdapter != nil {
312
		err = int(C.llama_set_adapter_lora(context.c, loraAdapter, C.float(scale)))
313
314
315
316
317
318
319
320
	}
	if err != 0 {
		return errors.New("error applying lora from file")
	}

	return nil
}

321
322
323
324
func (m *Model) Vocab() *C.struct_llama_vocab {
	return C.llama_model_get_vocab(m.c)
}

325
326
327
type Batch struct {
	c         C.struct_llama_batch
	batchSize int
328
	maxSeq    int
329
330
331
	embedSize int
}

332
333
334
// Creates a new batch for either word tokens or image embeddings (if embedSize is non-zero).
// Batches cannot contain both types at the same time. batchSize is the maximum number of entries
// that can be added per sequence
Jesse Gross's avatar
Jesse Gross committed
335
336
func NewBatch(batchSize int, maxSeq int, embedSize int) (*Batch, error) {
	b := Batch{
337
338
339
340
		c:         C.llama_batch_init(C.int(batchSize*maxSeq), C.int(embedSize), C.int(maxSeq)),
		batchSize: batchSize,
		maxSeq:    maxSeq,
		embedSize: embedSize,
341
	}
Jesse Gross's avatar
Jesse Gross committed
342
343
344
345
346
347
348
349
350
351
352
353

	// Check to see if any of the allocations in llama_batch_init() failed
	nilPointer := (embedSize == 0 && b.c.token == nil) || (embedSize != 0 && b.c.embd == nil) ||
		b.c.pos == nil || b.c.n_seq_id == nil || b.c.seq_id == nil || b.c.logits == nil ||
		slices.Contains(unsafe.Slice(b.c.seq_id, b.allocSize()), nil)

	if nilPointer {
		C.llama_batch_free(b.c)
		return nil, fmt.Errorf("unable to allocate batch (batchSize=%v maxSeq=%v embedSize=%v)", batchSize, maxSeq, embedSize)
	}

	return &b, nil
354
355
}

356
357
358
359
360
361
362
363
func (b *Batch) Size() int {
	return b.batchSize
}

func (b *Batch) allocSize() int {
	return b.batchSize * b.maxSeq
}

364
365
366
367
368
369
370
371
372
373
374
375
func (b *Batch) NumTokens() int {
	return int(b.c.n_tokens)
}

func (b *Batch) IsEmbedding() bool {
	return b.embedSize != 0
}

// Add adds either a token or an image embedding to the batch depending on the type
// when the batch was initialized. The other argument will be ignored. Adds to the
// batch with the given position for the given sequence ids, and optionally instructs
// to include logits.
376
func (b *Batch) Add(token int, embed []float32, pos int, logits bool, seqIds ...int) {
377
	if !b.IsEmbedding() {
378
		unsafe.Slice(b.c.token, b.allocSize())[b.c.n_tokens] = C.llama_token(token)
379
	} else {
380
		copy(unsafe.Slice((*float32)(b.c.embd), b.allocSize()*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed)
381
	}
382
383
	unsafe.Slice(b.c.pos, b.allocSize())[b.c.n_tokens] = C.llama_pos(pos)
	unsafe.Slice(b.c.n_seq_id, b.allocSize())[b.c.n_tokens] = C.int(len(seqIds))
384
385

	for i, s := range seqIds {
386
		unsafe.Slice((unsafe.Slice(b.c.seq_id, b.allocSize())[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s)
387
388
389
	}

	if logits {
390
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 1
391
392
	} else {
		unsafe.Slice(b.c.logits, b.allocSize())[b.c.n_tokens] = 0
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
	}

	b.c.n_tokens += 1
}

func (b *Batch) Clear() {
	b.c.n_tokens = 0
}

func (b *Batch) Free() {
	b.batchSize = 0
	C.llama_batch_free(b.c)
}

type Model struct {
	c *C.struct_llama_model
}

func (m *Model) TokenToPiece(token int) string {
	tokenLen := 12
	buf := make([]byte, tokenLen)
	tokenLen = int(C.llama_token_to_piece(
415
		m.Vocab(),
416
417
418
419
420
421
422
423
424
425
426
		C.int32_t(token),
		(*C.char)(unsafe.Pointer(&buf[0])),
		C.int32_t(tokenLen),
		C.int32_t(0),
		C.bool(true),
	))
	if tokenLen < 0 {
		tokenLen = -tokenLen

		buf = make([]byte, tokenLen)
		C.llama_token_to_piece(
427
			m.Vocab(),
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
			C.int32_t(token),
			(*C.char)(unsafe.Pointer(&buf[0])),
			C.int32_t(tokenLen),
			C.int32_t(0),
			C.bool(true),
		)
	}
	return strings.TrimRight(string(buf), "\x00")
}

func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) {
	maxTokens := len(text) + 2
	cTokens := make([]C.llama_token, maxTokens)
	cText := C.CString(text)
	defer C.free(unsafe.Pointer(cText))

	result := C.llama_tokenize(
445
		m.Vocab(),
446
447
448
449
450
451
452
453
454
455
456
457
458
		cText,
		C.int32_t(len(text)),
		&cTokens[0],
		C.int32_t(maxTokens),
		C.bool(addSpecial),
		C.bool(parseSpecial),
	)

	// if the result is negative, reallocate and retry with the correct buffer size
	if result < 0 {
		maxTokens = int(-result)
		cTokens = make([]C.llama_token, maxTokens)
		result = C.llama_tokenize(
459
			m.Vocab(),
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
			cText,
			C.int32_t(len(text)),
			&cTokens[0],
			C.int32_t(maxTokens),
			C.bool(addSpecial),
			C.bool(parseSpecial),
		)
		if result < 0 {
			return nil, fmt.Errorf("tokenization failed, required %d tokens", -result)
		}
	}

	tokens := make([]int, result)
	for i := range result {
		tokens[i] = int(cTokens[i])
	}

	return tokens, nil
}

func (m *Model) NEmbd() int {
481
	return int(C.llama_model_n_embd(m.c))
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
}

func Quantize(infile, outfile string, ftype uint32) error {
	cinfile := C.CString(infile)
	defer C.free(unsafe.Pointer(cinfile))

	coutfile := C.CString(outfile)
	defer C.free(unsafe.Pointer(coutfile))

	params := C.llama_model_quantize_default_params()
	params.nthread = -1
	params.ftype = ftype

	if rc := C.llama_model_quantize(cinfile, coutfile, &params); rc != 0 {
		return fmt.Errorf("llama_model_quantize: %d", rc)
	}

	return nil
}

502
// vision processing
503
type ClipContext struct {
504
	c *C.struct_clip_ctx
505
506
}

507
func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) {
508
509
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
510
	c := C.clip_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
511
512
513
	if c == nil {
		return nil, fmt.Errorf("unable to load clip model: %v", modelPath)
	}
514

515
516
517
518
	projEmbedSize := int(C.clip_n_mmproj_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
519
520
	}

521
	return &ClipContext{c: c}, nil
522
523
524
}

func (c *ClipContext) Free() {
525
	C.clip_free(c.c)
526
527
}

Jesse Gross's avatar
Jesse Gross committed
528
func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) ([][]float32, error) {
529
	l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data)))
Jesse Gross's avatar
Jesse Gross committed
530
531
532
	if l == nil {
		return nil, errors.New("unable to make llava embedding from image")
	}
533

534
	numTokens := int(l.n_image_pos)
535
536
	numEmbed := llamaContext.Model().NEmbd()

537
	s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens)
538
539
540
541
542
543
544
545
546

	embed := make([][]float32, numTokens)
	rows := make([]float32, len(s))
	copy(rows, s)

	for i := range embed {
		embed[i] = rows[i*numEmbed : (i+1)*numEmbed]
	}

547
	C.llava_image_embed_free(l)
548

Jesse Gross's avatar
Jesse Gross committed
549
	return embed, nil
550
551
}

552
553
554
555
556
557
558
559
type MllamaContext struct {
	c *C.struct_mllama_ctx
}

func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) {
	mp := C.CString(modelPath)
	defer C.free(unsafe.Pointer(mp))
	c := C.mllama_model_load(mp, 1)
Jesse Gross's avatar
Jesse Gross committed
560
561
562
	if c == nil {
		return nil, fmt.Errorf("unable to load mllama model: %v", modelPath)
	}
563
564
565
566
567
568
569
570
571
572
573
574
575
576

	projEmbedSize := int(C.mllama_n_embd(c))
	modelEmbedSize := llamaContext.Model().NEmbd()
	if projEmbedSize != modelEmbedSize {
		return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize)
	}

	return &MllamaContext{c: c}, nil
}

func (m *MllamaContext) Free() {
	C.mllama_free(m.c)
}

Jesse Gross's avatar
Jesse Gross committed
577
func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) ([][]float32, error) {
578
579
580
	img := C.mllama_image_init()
	defer C.mllama_image_free(img)

Jesse Gross's avatar
Jesse Gross committed
581
582
583
584
	ok := bool(C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img))
	if !ok {
		return nil, errors.New("unable to load mllama image data")
	}
585

586
	rows := make([]float32, m.EmbedSize(llamaContext))
Jesse Gross's avatar
Jesse Gross committed
587
588
589
590
	ok = bool(C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))))
	if !ok {
		return nil, errors.New("unable to make mllama embedding from image")
	}
591

592
593
	embed := make([][]float32, 1)
	embed[0] = rows
594

Jesse Gross's avatar
Jesse Gross committed
595
	return embed, nil
596
597
}

598
599
600
func (m *MllamaContext) EmbedSize(llamaContext *Context) int {
	numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c))
	numEmbed := llamaContext.Model().NEmbd()
601

602
603
	return numTokens * numEmbed
}
604

605
606
func (c *Context) SetCrossAttention(state bool) {
	C.llama_set_cross_attention(c.c, C.bool(state))
607
608
}

609
610
611
612
func (c *Context) Synchronize() {
	C.llama_synchronize(c.c)
}

613
614
615
// sampling
// TODO: this is a temporary wrapper to allow calling C++ code from CGo
type SamplingContext struct {
616
	c *C.struct_common_sampler
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
}

type SamplingParams struct {
	TopK           int
	TopP           float32
	MinP           float32
	TypicalP       float32
	Temp           float32
	RepeatLastN    int
	PenaltyRepeat  float32
	PenaltyFreq    float32
	PenaltyPresent float32
	Mirostat       int
	MirostatTau    float32
	MirostatEta    float32
	PenalizeNl     bool
	Seed           uint32
	Grammar        string
}

Jesse Gross's avatar
Jesse Gross committed
637
func NewSamplingContext(model *Model, params SamplingParams) (*SamplingContext, error) {
638
	var cparams C.struct_common_sampler_cparams
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
	cparams.top_k = C.int32_t(params.TopK)
	cparams.top_p = C.float(params.TopP)
	cparams.min_p = C.float(params.MinP)
	cparams.typical_p = C.float(params.TypicalP)
	cparams.temp = C.float(params.Temp)
	cparams.penalty_last_n = C.int32_t(params.RepeatLastN)
	cparams.penalty_repeat = C.float(params.PenaltyRepeat)
	cparams.penalty_freq = C.float(params.PenaltyFreq)
	cparams.penalty_present = C.float(params.PenaltyFreq)
	cparams.mirostat = C.int32_t(params.Mirostat)
	cparams.mirostat_tau = C.float(params.MirostatTau)
	cparams.mirostat_eta = C.float(params.MirostatEta)
	cparams.seed = C.uint32_t(params.Seed)

	grammar := C.CString(params.Grammar)
	defer C.free(unsafe.Pointer(grammar))

	cparams.grammar = grammar
657
	context := &SamplingContext{c: C.common_sampler_cinit(model.c, &cparams)}
Jesse Gross's avatar
Jesse Gross committed
658
659
660
661
	if context.c == nil {
		return nil, errors.New("unable to create sampling context")
	}

662
	runtime.SetFinalizer(context, func(s *SamplingContext) { C.common_sampler_cfree(s.c) })
663

Jesse Gross's avatar
Jesse Gross committed
664
	return context, nil
665
666
667
}

func (s *SamplingContext) Reset() {
668
	C.common_sampler_creset(s.c)
669
670
}

671
func (s *SamplingContext) Sample(llamaContext *Context, idx int) int {
672
	return int(C.common_sampler_csample(s.c, llamaContext.c, C.int(idx)))
673
674
}

675
func (s *SamplingContext) Accept(id int, applyGrammar bool) {
676
	C.common_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar))
677
}
678

679
680
681
682
// SchemaToGrammar converts the provided JSON schema to a grammar. It returns
// nil if the provided schema is invalid JSON or an invalid JSON schema.
func SchemaToGrammar(schema []byte) []byte {
	cStr := C.CString(string(schema))
683
684
685
686
687
688
689
	defer C.free(unsafe.Pointer(cStr))

	// Allocate buffer for grammar output with reasonable size
	const maxLen = 32768 // 32KB
	buf := make([]byte, maxLen)

	// Call C function to convert schema to grammar
690
691
692
693
	n := C.schema_to_grammar(cStr, (*C.char)(unsafe.Pointer(&buf[0])), C.size_t(maxLen))
	if n == 0 {
		// preserve nil
		return nil
694
	}
695
	return buf[:n]
696
}