runner.go 35.3 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
	"log"
	"log/slog"
Michael Yang's avatar
Michael Yang committed
14
	"math"
15
16
17
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
18
	"reflect"
19
20
	"regexp"
	"runtime"
21
	"runtime/debug"
22
23
24
25
	"strconv"
	"strings"
	"sync"
	"time"
26
	"unicode/utf8"
27

28
	"golang.org/x/image/bmp"
29
30
	"golang.org/x/sync/semaphore"

31
	"github.com/ollama/ollama/api"
32
	"github.com/ollama/ollama/envconfig"
33
	"github.com/ollama/ollama/llm"
34
	"github.com/ollama/ollama/logutil"
35
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
36
	"github.com/ollama/ollama/model"
37
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
38
39
40
41
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
42
43
44
)

type Sequence struct {
45
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
46
	// multimodal embeddings
47
	ctxs []ml.Context
48

49
50
51
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

52
53
54
55
	// batch index
	iBatch int

	// prompt inputs left to evaluate
56
	inputs []*input.Input
57

Jesse Gross's avatar
Jesse Gross committed
58
	// inputs that have been added to a batch but not yet submitted to Forward
59
	pendingInputs []*input.Input
60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

76
77
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
78
79
80
81
82
83
84
85

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
86
	numKeep int32
87
88
89
90

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

91
	doneReason llm.DoneReason
92
93
94
95

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
96
	numPredicted        int
97
98
99
100
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
101
102
103
	numPredict int
	stop       []string
	numKeep    int32
104
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
105
	embedding  bool
106
107
}

108
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
109
110
111
112
	s.ready.Wait()

	startTime := time.Now()

113
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
114
115
116
117
118
119
120
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
121
		params.numKeep = int32(len(inputs))
122
123
	}

124
125
126
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
127
128
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

157
		newInputs := inputs[:params.numKeep]
158
		newInputs = append(newInputs, inputs[promptStart:]...)
159
160

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
161
		inputs = newInputs
162
163
	}

Jesse Gross's avatar
Jesse Gross committed
164
	// TODO(jessegross): Ingest cached history for grammar
165
166

	return &Sequence{
167
		ctxs:                ctxs,
168
		mmStore:             mmStore,
169
170
171
172
173
174
175
176
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
177
		sampler:             params.sampler,
178
179
180
181
182
183
184
185
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
186
// decoding images
187
188
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
	var inputs []*input.Input
189
	var ctxs []ml.Context
190
	var mmStore multimodalStore
191

192
193
194
	var parts []string
	var matches [][]string

195
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
196

197
198
199
200
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
201
		mmStore = newMultimodalStore()
202
203
204
205
206
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
207
208
	for i, part := range parts {
		// text - tokenize
209
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
210
		if err != nil {
211
			return nil, nil, nil, err
212
		}
213

214
		for _, t := range tokens {
215
			inputs = append(inputs, &input.Input{Token: t})
216
217
		}

Jesse Gross's avatar
Jesse Gross committed
218
		// image - decode and store
219
220
221
222
223
224
225
226
227
228
229
230
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
231
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
232
233
			}

234
			ctx := s.model.Backend().NewContext()
235
236
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
237
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
238
			if err != nil {
239
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
240
241
			}

242
243
244
245
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

246
247
			mmStore.addMultimodal(imageEmbeddings)

248
			inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
249
250
251
252
253
254
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
255
		inputs, err = multimodalProcessor.PostTokenize(inputs)
256
		if err != nil {
257
			return nil, nil, nil, err
258
259
260
		}
	}

261
	return inputs, ctxs, mmStore, nil
262
263
}

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
type batchState struct {
	// id provides a counter for trace logging batches
	id int

	// ctx holds the backend context used for this batch
	ctx ml.Context

	// modelOutput holds the outputs from this batch
	modelOutput ml.Tensor

	// batchInputs holds the input token pointers which may start as
	// placeholders later filled in before calling ctx.Compute
	batchInputs []*input.Input

	// batch contains the inputs for a model forward pass
	batch input.Batch

	// full set of seqs at the time this batch was initiated
	seqs []*Sequence

	// Signaled when this batches inputs are ready and compute can proceed
	inputsReadyCh chan struct{}

	// Signaling when Compute is about to begin on this batch, and
	// seqs have been updated to prepare for the next batch
	computeStartedCh chan struct{}

	// Signaled when this batches outputs are complete and the next batch can proceed
	outputsReadyCh chan struct{}
}

295
type Server struct {
Jesse Gross's avatar
Jesse Gross committed
296
297
298
299
300
301
302
303
304
305
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

306
307
308
309
310
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
311
	model model.Model
312

313
	// status for external health reporting - loading, ready to serve, etc.
314
	status llm.ServerStatus
315
316
317
318
319
320
321
322

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
323
	// TODO (jmorganca): make this n_batch
324
325
	batchSize int

326
327
328
329
330
331
	// Used to signal a hard failure during async processing which will panic the runner
	hardErrCh chan error

	// Simple counter used only for trace logging batches
	batchID int

332
333
334
335
336
337
338
339
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
340
341
	seqs []*Sequence

342
343
344
345
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

346
347
348
	// KV cache
	cache *InputCache

349
350
351
	// next sequence for prompt processing to avoid starvation
	nextSeq int

352
353
354
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
355
356
357
358
359
360
361
362
363
364
365
366
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
367
368
369
370
371
372
373
374
375
376
377
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
378
379
	}

380
381
382
383
384
385
386
387
388
389
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
390
391
}

392
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
393
394
395
396
397
398
399
400
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
401
	s.seqsSem.Release(1)
402
403
}

404
405
// track batch state between forwardBatch, computeBatch and predictForwardBatch

406
407
408
func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

Michael Yang's avatar
Michael Yang committed
409
410
	supportsAsync := s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32

411
	var activeBatch batchState
412
413
414
415
	for {
		select {
		case <-ctx.Done():
			return
416
417
		case err := <-s.hardErrCh:
			panic(err)
418
		default:
419
420
			var err error
			activeBatch, err = s.forwardBatch(activeBatch)
421
422
423
			if err != nil {
				panic(err)
			}
Michael Yang's avatar
Michael Yang committed
424
425
426
427
428
429

			if supportsAsync {
				go s.computeBatch(activeBatch)
			} else {
				s.computeBatch(activeBatch)
			}
430
431
432
433
		}
	}
}

434
435
436
437
438
439
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
	// If we have a pending batch still processing, wait until Compute has started
	// before setting up the next batch so the seqs inputs are ready to receive their
	// token values and we get the correct input pointers for the batchInputs
	if pendingBatch.ctx != nil {
Michael Yang's avatar
Michael Yang committed
440
		logutil.Trace("forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
441
		<-pendingBatch.computeStartedCh
Michael Yang's avatar
Michael Yang committed
442
		logutil.Trace("forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
443
444
		nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
	} else {
Michael Yang's avatar
Michael Yang committed
445
		logutil.Trace("forwardBatch no pending batch detected", "batchID", s.batchID)
446
447
448
449
450
		// No pendingBatch, so the inputs will be ready in the seqs immediately
		nextBatch.inputsReadyCh = make(chan struct{}, 1)
		nextBatch.inputsReadyCh <- struct{}{}
	}

451
452
453
454
455
456
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

457
458
459
460
461
462
463
464
465
466
467
	nextBatch.ctx = s.model.Backend().NewContext()
	defer func() {
		if err != nil {
			nextBatch.ctx.Close()
			nextBatch.ctx = nil
		}
	}()
	nextBatch.id = s.batchID
	nextBatch.seqs = append([]*Sequence{}, s.seqs...)
	nextBatch.computeStartedCh = make(chan struct{}, 1)
	nextBatch.outputsReadyCh = make(chan struct{}, 1)
468

469
470
	// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
	var batchInputs []*input.Input
Jesse Gross's avatar
Jesse Gross committed
471
	var batch input.Batch
472

473
474
475
476
477
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]
478
479
480
481
482
		if seq == nil {
			continue
		}

		// if past the num predict limit
483
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
484
			s.removeSequence(seqIdx, llm.DoneReasonLength)
485
			nextBatch.seqs[seqIdx] = nil
486
487
488
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
489
490
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
491
			seq.cache.Inputs = []*input.Input{}
Jesse Gross's avatar
Jesse Gross committed
492
493
		}

494
495
		batchSize := s.batchSize

496
		for i, inp := range seq.inputs {
497
498
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
499
			// will cause a break if we have existing inputs.
500
501
502
503
504
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

505
506
507
508
509
510
511
512
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
513
514
				break
			}
Jesse Gross's avatar
Jesse Gross committed
515

516
517
518
519
520
521
522
523
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

524
				err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
525
				if err != nil {
526
527
528
529
530
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
531
532
						nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
						err = nil
533
534
						continue
					} else {
535
						return
536
					}
537
538
539
				}
			}

540
			batchInputs = append(batchInputs, seq.inputs[i])
541
			if inp.Multimodal != nil {
542
543
				var mm []input.Multimodal
				mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
544
				if err != nil {
545
					return
546
547
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
548
549
			}

Jesse Gross's avatar
Jesse Gross committed
550
551
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
552

Jesse Gross's avatar
Jesse Gross committed
553
			seq.iBatch = len(batch.Outputs)
554
			if i+1 == len(seq.inputs) {
555
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
556
			}
Michael Yang's avatar
Michael Yang committed
557
			logutil.Trace("forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
558
			seq.pendingInputs = append(seq.pendingInputs, inp)
559
		}
560
561

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
562
563
	}

564
565
566
567
568
569
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

570
	if len(batchInputs) == 0 {
Michael Yang's avatar
Michael Yang committed
571
		logutil.Trace("forwardBatch no batchInputs, going idle", "batchID", s.batchID)
572
573
574
		nextBatch.ctx.Close()
		nextBatch.ctx = nil
		return
575
	}
576
	s.batchID++
577

578
579
580
	// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
	batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
	nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
581
	if err != nil {
582
583
		err = fmt.Errorf("failed to build graph: %w", err)
		return
584
	}
585
586
	nextBatch.batchInputs = batchInputs
	nextBatch.batch = batch
587

588
589
590
591
592
593
594
595
596
597
598
599
	return
}

// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
	if activeBatch.ctx == nil {
		// Nothing to compute
		return
	}
	defer activeBatch.ctx.Close()

	// Wait until inputs are ready
Michael Yang's avatar
Michael Yang committed
600
	logutil.Trace("computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
601
	<-activeBatch.inputsReadyCh
Michael Yang's avatar
Michael Yang committed
602
	logutil.Trace("computeBatch: inputs are ready", "batchID", activeBatch.id)
603

604
605
606
	// Once we complete, signal the next batch of inputs are ready
	// This will unblock the next computeBatch, or forwardBatch if new seqs come in
	defer func() {
Michael Yang's avatar
Michael Yang committed
607
		logutil.Trace("computeBatch: outputs are ready", "batchID", activeBatch.id)
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
		activeBatch.outputsReadyCh <- struct{}{}
	}()

	s.mu.Lock()

	// Gather the actual input token values now that they're ready
	batchInputs := make([]int32, len(activeBatch.batchInputs))
	for i := range batchInputs {
		batchInputs[i] = activeBatch.batchInputs[i].Token
	}

	// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
	// so that forwardBatch can build a batchInputs set which will eventually contain the actual
	// decoded tokens.
	nextBatchTokens := make([]*input.Input, len(s.seqs))
	iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
624
	for i, seq := range s.seqs {
625
		iBatches[i] = -1
626
627
628
		if seq == nil {
			continue
		}
629
630
631
632
		// Skip over any newly added or skipped sequences
		if activeBatch.seqs[i] == nil {
			continue
		}
633

634
635
636
		// Detect if the sequence we're processing has already been completed and replaced
		// with a new sequence
		if seq != activeBatch.seqs[i] {
Michael Yang's avatar
Michael Yang committed
637
			logutil.Trace("computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
638
639
640
641
642
643
644
645
646
647
648
			continue
		}

		// Pending inputs will actually be in the cache after we call Compute.
		// However, we have already resolved any placeholder tokens.
		//
		// It's possible for incoming sequences to look at the values that we've
		// added to the cache here and start relying on them before we've done
		// the computation. This is OK as long as we ensure that this batch's
		// computation happens before any future batch's and we never fail
		// (unless we take down the whole runner).
649
650
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
651
			seq.pendingInputs = []*input.Input{}
652
653
		}

654
655
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
656
			if !s.cache.enabled {
657
658
659
				s.hardErrCh <- fmt.Errorf("caching disabled but unable to fit entire input in a batch")
				s.mu.Unlock()
				return
Jesse Gross's avatar
Jesse Gross committed
660
			}
661
662
663
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
664
		seq.numPredicted++
665
666
667
668
669
670
671
672
673
674
675
676
		nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
		seq.inputs = []*input.Input{nextToken}
		nextBatchTokens[i] = nextToken
		iBatches[i] = seq.iBatch
	}

	// At this point the seqs are ready for forwardBatch to move forward so unblock
	s.mu.Unlock()

	activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
	activeBatch.ctx.ComputeWithNotify(
		func() {
Michael Yang's avatar
Michael Yang committed
677
			logutil.Trace("computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
678
679
680
			activeBatch.computeStartedCh <- struct{}{}
		},
		activeBatch.modelOutput)
Michael Yang's avatar
Michael Yang committed
681
682

	outputs := activeBatch.modelOutput.Floats()
683

Michael Yang's avatar
Michael Yang committed
684
	logutil.Trace("computeBatch: logits ready", "batchID", activeBatch.id)
685
686
687
688

	s.mu.Lock()
	defer s.mu.Unlock()

Michael Yang's avatar
Michael Yang committed
689
	logutil.Trace("computeBatch: decoding", "batchID", activeBatch.id)
690
691
692
693
694
	for i, seq := range s.seqs {
		if seq == nil || nextBatchTokens[i] == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
695
		if seq.numPredicted == 1 {
696
697
698
699
700
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Michael Yang's avatar
Michael Yang committed
701
			seq.embedding <- outputs
702
			s.removeSequence(i, llm.DoneReasonStop)
703
			continue
704
705
706
		}

		// sample a token
Michael Yang's avatar
Michael Yang committed
707
708
709
		vocabSize := len(outputs) / len(activeBatch.batch.Outputs)
		logutil.Trace("computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(outputs), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
		token, err := seq.sampler.Sample(outputs[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
710
		if err != nil {
711
712
			s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
713
		}
714

715
716
		nextBatchTokens[i].Token = token

717
		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
718
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
719
720
721
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece
Michael Yang's avatar
Michael Yang committed
722
			logutil.Trace("computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
723
			s.removeSequence(i, llm.DoneReasonStop)
724
725
726
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
727
728
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
729
730
			s.hardErrCh <- fmt.Errorf("failed to decode token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
731
732
		}

733
734
735
		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
736
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
737
738
739
740
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
741
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
742
743
744
745
746
747
748
749
750
751
752
753
754
755
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
756

757
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
758

759
			s.removeSequence(i, llm.DoneReasonStop)
760
761
762
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
763
		if common.ContainsStopSuffix(sequence, seq.stop) {
764
765
766
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
767
		if common.IncompleteUnicode(sequence) {
768
769
770
771
			continue
		}

		if !flushPending(seq) {
772
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
773
774
775
776
777
		}
	}
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
778
	var req llm.CompletionRequest
779
780
781
782
783
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

784
785
786
787
788
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

789
790
791
792
793
794
795
796
797
798
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

799
	var grammar *sample.GrammarSampler
800
801
	var err error
	if req.Grammar != "" {
802
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
803
804
805
806
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
807
		defer grammar.Free()
808
809
	}

810
	sampler := sample.NewSampler(
811
812
813
814
815
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
816
		grammar,
817
818
	)

819
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
820
821
822
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
823
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
824
		embedding:  false,
825
826
827
828
829
830
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

831
	// Ensure there is a place to put the sequence, released when removed from s.seqs
832
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
833
834
835
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
836
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
837
		}
838
839
840
		return
	}

841
	s.mu.Lock()
842
	found := false
843
844
	for i, sq := range s.seqs {
		if sq == nil {
Michael Yang's avatar
Michael Yang committed
845
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, true)
846
847
			if err != nil {
				s.mu.Unlock()
848
				s.seqsSem.Release(1)
849
850
851
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
852

853
854
			s.seqs[i] = seq
			s.cond.Signal()
855
			found = true
856
857
858
859
860
			break
		}
	}
	s.mu.Unlock()

861
	if !found {
862
		s.seqsSem.Release(1)
863
864
865
866
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

867
868
869
870
871
872
873
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
874
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
875
876
877
878
879
880
881
882
883
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
884
885
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
886
					DoneReason:         seq.doneReason,
887
888
889
890
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
891
892
893
894
895
896
897
898
899
900
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

Michael Yang's avatar
Michael Yang committed
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) {
	if s.model.Backend().Config().Uint("pooling_type", math.MaxUint32) == math.MaxUint32 {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
		return
	}

	var req llm.EmbeddingRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest)
		return
	}

	w.Header().Set("Content-Type", "application/json")
	seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true})
	if err != nil {
		http.Error(w, fmt.Sprintf("failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting embedding request due to client closing the connection")
		} else {
			http.Error(w, fmt.Sprintf("failed to acquire semaphore: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.mu.Lock()
	found := false
	for i, sq := range s.seqs {
		if sq == nil {
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, false)
			if err != nil {
				s.mu.Unlock()
				s.seqsSem.Release(1)
				http.Error(w, fmt.Sprintf("failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}

			s.seqs[i] = seq
			s.cond.Signal()
			found = true
			break
		}
	}
	s.mu.Unlock()

	if !found {
		s.seqsSem.Release(1)
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

	if err := json.NewEncoder(w).Encode(&llm.EmbeddingResponse{
		Embedding: <-seq.embedding,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

962
963
func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
964
965
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
966
967
968
969
970
971
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

972
func (s *Server) reserveWorstCaseGraph() error {
973
974
975
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

976
	var err error
977
978
979
980
	inputs := make([]*input.Input, s.batchSize)
	for i := range inputs {
		inputs[i] = &input.Input{}
	}
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); ok {
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

			if len(inputs) < s.batchSize {
1022
				newInputs := make([]*input.Input, s.batchSize)
1023
				copy(newInputs, inputs)
1024
1025
1026
				for i := len(inputs); i < s.batchSize; i++ {
					newInputs[i] = &input.Input{}
				}
1027
1028
1029
1030
1031
				inputs = newInputs
			}
		}
	}

1032
1033
	var batch input.Batch

1034
	batchInputs := make([]int32, len(inputs))
1035
1036
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

1047
1048
1049
1050
1051
1052
1053
1054
		batch.Positions[i] = int32(i)
	}

	batch.Outputs = make([]int32, s.parallel)
	for i := range batch.Outputs {
		batch.Outputs[i] = int32(i)
	}

1055
	batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

1070
	ctx.Forward(t).Reserve()
1071
1072

	return nil
1073
}
1074

Jesse Gross's avatar
Jesse Gross committed
1075
1076
1077
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
1078
	mpath string,
1079
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
1080
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
1081
	parallel int,
1082
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
1083
	kvSize int,
1084
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
1085
1086
1087
1088
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
1089
			debug.PrintStack()
Jesse Gross's avatar
Jesse Gross committed
1090
1091
1092
1093
1094
1095
1096
1097
			if err, ok := r.(error); ok {
				panicErr = err
			} else {
				panic(r)
			}
		}
	}()

1098
	var err error
1099
	s.model, err = model.New(mpath, params)
1100
	if err != nil {
1101
		return err
1102
	}
1103

Jesse Gross's avatar
Jesse Gross committed
1104
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
1105
	if len(loraPath) > 0 {
1106
		return errors.New("loras are not yet implemented")
1107
1108
	}

1109
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
1110
	if err != nil {
1111
		return err
1112
	}
1113

Jesse Gross's avatar
Jesse Gross committed
1114
1115
1116
1117
1118
1119
1120
1121
1122
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

1123
1124
1125
	return s.reserveWorstCaseGraph()
}

Jesse Gross's avatar
Jesse Gross committed
1126
1127
1128
1129
1130
1131
1132
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
1133
	}
Jesse Gross's avatar
Jesse Gross committed
1134
}
1135

Jesse Gross's avatar
Jesse Gross committed
1136
1137
1138
1139
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
1140
1141
1142
1143
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
1144
		panic(fmt.Errorf("failed to load model: %v", err))
1145
1146
	}

1147
	s.status = llm.ServerStatusReady
1148
1149
1150
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

1237
1238
1239
1240
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
1241
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
1242

1243
1244
1245
1246
1247
1248
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1249
	}
1250
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1251
	slog.Info("starting ollama engine")
1252

1253
1254
1255
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1256
1257
1258
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1259
		hardErrCh: make(chan error, 1),
1260
1261
	}

Jesse Gross's avatar
Jesse Gross committed
1262
1263
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1264
1265
1266
1267
1268
1269
1270

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1271
		return err
1272
1273
1274
1275
	}
	defer listener.Close()

	mux := http.NewServeMux()
1276
	// TODO: support embeddings
Jesse Gross's avatar
Jesse Gross committed
1277
	mux.HandleFunc("POST /load", server.load)
Michael Yang's avatar
Michael Yang committed
1278
	mux.HandleFunc("POST /embedding", server.embeddings)
1279
1280
	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1281
1282
1283
1284
1285
1286
1287
1288

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1289
		return err
1290
1291
	}

1292
	return nil
1293
}