"sgl-kernel/vscode:/vscode.git/clone" did not exist on "93eb92f85149cf86b5a6b6e29a47d33db3b9ef08"
runner.go 34 KB
Newer Older
Jesse Gross's avatar
Jesse Gross committed
1
package ollamarunner
2
3

import (
4
	"bytes"
5
6
7
8
9
	"context"
	"encoding/json"
	"errors"
	"flag"
	"fmt"
10
	"hash/maphash"
11
	"image"
12
13
14
15
16
	"log"
	"log/slog"
	"net"
	"net/http"
	"os"
Jesse Gross's avatar
Jesse Gross committed
17
	"reflect"
18
19
	"regexp"
	"runtime"
20
	"runtime/debug"
21
22
23
24
	"strconv"
	"strings"
	"sync"
	"time"
25
	"unicode/utf8"
26

27
	"golang.org/x/image/bmp"
28
29
	"golang.org/x/sync/semaphore"

30
	"github.com/ollama/ollama/api"
31
	"github.com/ollama/ollama/envconfig"
32
	"github.com/ollama/ollama/llm"
33
	"github.com/ollama/ollama/logutil"
34
	"github.com/ollama/ollama/ml"
Jesse Gross's avatar
Jesse Gross committed
35
	"github.com/ollama/ollama/model"
36
	"github.com/ollama/ollama/model/input"
Jesse Gross's avatar
Jesse Gross committed
37
38
39
40
	"github.com/ollama/ollama/runner/common"
	"github.com/ollama/ollama/sample"

	_ "github.com/ollama/ollama/model/models"
41
42
43
)

type Sequence struct {
44
	// ctxs are used for allocating tensors that last the lifetime of the sequence, such as
45
	// multimodal embeddings
46
	ctxs []ml.Context
47

48
49
50
	// mmStore holds multimodal embeddings to mange memory and enable splitting across batches
	mmStore multimodalStore

51
52
53
54
	// batch index
	iBatch int

	// prompt inputs left to evaluate
55
	inputs []*input.Input
56

Jesse Gross's avatar
Jesse Gross committed
57
	// inputs that have been added to a batch but not yet submitted to Forward
58
	pendingInputs []*input.Input
59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
	// tokens that have been generated but not returned yet (e.g. for stop sequences)
	pendingResponses []string

	// input cache being used by this sequence
	cache *InputCacheSlot

	// channel to send responses over
	responses chan string

	// channel to stop decoding (such as if the remote connection is closed)
	quit chan bool

	// number of tokens to predict
	numPredict int

75
76
	// sampler with transforms to run on generated logits
	sampler sample.Sampler
77
78
79
80
81
82
83
84

	// channel to send back the embedding if embedding only
	embedding chan []float32

	// stop sequences
	stop []string

	// number of inputs to keep at the beginning when shifting context window
Jesse Gross's avatar
Jesse Gross committed
85
	numKeep int32
86
87
88
89

	// true if an embedding are to be returned instead of text generation
	embeddingOnly bool

90
	doneReason llm.DoneReason
91
92
93
94

	// Metrics
	startProcessingTime time.Time
	startGenerationTime time.Time
Jesse Gross's avatar
Jesse Gross committed
95
	numPredicted        int
96
97
98
99
	numPromptInputs     int
}

type NewSequenceParams struct {
Jesse Gross's avatar
Jesse Gross committed
100
101
102
	numPredict int
	stop       []string
	numKeep    int32
103
	sampler    sample.Sampler
Jesse Gross's avatar
Jesse Gross committed
104
	embedding  bool
105
106
}

107
func (s *Server) NewSequence(prompt string, images []llm.ImageData, params NewSequenceParams) (*Sequence, error) {
108
109
110
111
	s.ready.Wait()

	startTime := time.Now()

112
	inputs, ctxs, mmStore, err := s.inputs(prompt, images)
113
114
115
116
117
118
119
	if err != nil {
		return nil, fmt.Errorf("failed to process inputs: %w", err)
	} else if len(inputs) == 0 {
		return nil, errors.New("no input provided")
	}

	if params.numKeep < 0 {
Jesse Gross's avatar
Jesse Gross committed
120
		params.numKeep = int32(len(inputs))
121
122
	}

123
124
125
	// Ensure that at least 1 input can be discarded during shift
	params.numKeep = min(params.numKeep, s.cache.numCtx-1)

Jesse Gross's avatar
Jesse Gross committed
126
127
	if int32(len(inputs)) > s.cache.numCtx {
		discard := int32(len(inputs)) - s.cache.numCtx
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
		promptStart := params.numKeep + discard

		// If we need to truncate in the middle of a unbreakable batch, remove the entire batch
		sameBatch := 0
		for i, inp := range inputs {
			if sameBatch > 0 {
				sameBatch--

				if promptStart == int32(i) {
					promptStart++
				}
			} else if promptStart == int32(i) {
				break
			}

			if inp.SameBatch != 0 {
				if int32(i) < params.numKeep {
					return nil, fmt.Errorf("SameBatch may not be specified within numKeep (index: %v numKeep: %v SameBatch: %v)", i, params.numKeep, inp.SameBatch)
				}

				sameBatch = inp.SameBatch
			}
		}

		if promptStart >= int32(len(inputs)) {
			return nil, errors.New("entire prompt removed by truncation")
		}

156
		newInputs := inputs[:params.numKeep]
157
		newInputs = append(newInputs, inputs[promptStart:]...)
158
159

		slog.Warn("truncating input prompt", "limit", s.cache.numCtx, "prompt", len(inputs), "keep", params.numKeep, "new", len(newInputs))
160
		inputs = newInputs
161
162
	}

Jesse Gross's avatar
Jesse Gross committed
163
	// TODO(jessegross): Ingest cached history for grammar
164
165

	return &Sequence{
166
		ctxs:                ctxs,
167
		mmStore:             mmStore,
168
169
170
171
172
173
174
175
		inputs:              inputs,
		numPromptInputs:     len(inputs),
		startProcessingTime: startTime,
		numPredict:          params.numPredict,
		pendingResponses:    make([]string, 0),
		responses:           make(chan string, 100),
		quit:                make(chan bool, 1),
		embedding:           make(chan []float32, 1),
176
		sampler:             params.sampler,
177
178
179
180
181
182
183
184
		embeddingOnly:       params.embedding,
		stop:                params.stop,
		numKeep:             params.numKeep,
	}, nil
}

// inputs processes the prompt and images into a list of inputs
// by splitting the prompt on [img-<n>] tags, tokenizing text and
Jesse Gross's avatar
Jesse Gross committed
185
// decoding images
186
187
func (s *Server) inputs(prompt string, images []llm.ImageData) ([]*input.Input, []ml.Context, multimodalStore, error) {
	var inputs []*input.Input
188
	var ctxs []ml.Context
189
	var mmStore multimodalStore
190

191
192
193
	var parts []string
	var matches [][]string

194
	multimodalProcessor, visionModel := s.model.(model.MultimodalProcessor)
195

196
197
198
199
	if visionModel {
		re := regexp.MustCompile(`\[img-(\d+)\]`)
		parts = re.Split(prompt, -1)
		matches = re.FindAllStringSubmatch(prompt, -1)
200
		mmStore = newMultimodalStore()
201
202
203
204
205
	} else {
		parts = []string{prompt}
	}

	postTokenize := false
206
207
	for i, part := range parts {
		// text - tokenize
208
		tokens, err := s.model.(model.TextProcessor).Encode(part, i == 0)
209
		if err != nil {
210
			return nil, nil, nil, err
211
		}
212

213
		for _, t := range tokens {
214
			inputs = append(inputs, &input.Input{Token: t})
215
216
		}

Jesse Gross's avatar
Jesse Gross committed
217
		// image - decode and store
218
219
220
221
222
223
224
225
226
227
228
229
		if i < len(matches) {
			n, _ := strconv.Atoi(matches[i][1])

			imageIndex := -1
			for j := range images {
				if images[j].ID == n {
					imageIndex = j
					break
				}
			}

			if imageIndex < 0 {
230
				return nil, nil, nil, fmt.Errorf("invalid image index: %d", n)
231
232
			}

233
			ctx := s.model.Backend().NewContext()
234
235
			runtime.SetFinalizer(ctx, func(c ml.Context) { c.Close() })
			ctxs = append(ctxs, ctx)
236
			imageEmbeddings, err := multimodalProcessor.EncodeMultimodal(ctx, images[imageIndex].Data)
Jesse Gross's avatar
Jesse Gross committed
237
			if err != nil {
238
				return nil, nil, nil, err
Jesse Gross's avatar
Jesse Gross committed
239
240
			}

241
242
243
244
			s.multimodalHash.Reset()
			_, _ = s.multimodalHash.Write(images[imageIndex].Data)
			imageHash := s.multimodalHash.Sum64()

245
246
			mmStore.addMultimodal(imageEmbeddings)

247
			inputs = append(inputs, &input.Input{Multimodal: imageEmbeddings, MultimodalHash: imageHash})
248
249
250
251
252
253
			postTokenize = true
		}
	}

	if visionModel && postTokenize {
		var err error
254
		inputs, err = multimodalProcessor.PostTokenize(inputs)
255
		if err != nil {
256
			return nil, nil, nil, err
257
258
259
		}
	}

260
	return inputs, ctxs, mmStore, nil
261
262
}

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
type batchState struct {
	// id provides a counter for trace logging batches
	id int

	// ctx holds the backend context used for this batch
	ctx ml.Context

	// modelOutput holds the outputs from this batch
	modelOutput ml.Tensor

	// batchInputs holds the input token pointers which may start as
	// placeholders later filled in before calling ctx.Compute
	batchInputs []*input.Input

	// batch contains the inputs for a model forward pass
	batch input.Batch

	// full set of seqs at the time this batch was initiated
	seqs []*Sequence

	// Signaled when this batches inputs are ready and compute can proceed
	inputsReadyCh chan struct{}

	// Signaling when Compute is about to begin on this batch, and
	// seqs have been updated to prepare for the next batch
	computeStartedCh chan struct{}

	// Signaled when this batches outputs are complete and the next batch can proceed
	outputsReadyCh chan struct{}
}

294
type Server struct {
Jesse Gross's avatar
Jesse Gross committed
295
296
297
298
299
300
301
302
303
304
	// modelPath is the location of the model to be loaded
	modelPath string

	// loadMu prevents more than one load attempt from occurring at a time
	loadMu sync.Mutex

	// lastLoad is the load request from the previous load attempt. Used to
	// detect if we can reuse an existing memory allocation.
	lastLoad llm.LoadRequest

305
306
307
308
309
	// is the server ready to process requests?
	// protects access to model and image
	ready sync.WaitGroup

	// loaded model
Jesse Gross's avatar
Jesse Gross committed
310
	model model.Model
311

312
	// status for external health reporting - loading, ready to serve, etc.
313
	status llm.ServerStatus
314
315
316
317
318
319
320
321

	// current progress on loading the model
	progress float32

	// number of simultaneous requests to handle
	parallel int

	// maximum number of elements in a batch (per sequence)
322
	// TODO (jmorganca): make this n_batch
323
324
	batchSize int

325
326
327
328
329
330
	// Used to signal a hard failure during async processing which will panic the runner
	hardErrCh chan error

	// Simple counter used only for trace logging batches
	batchID int

331
332
333
334
335
336
337
338
	// protects access to everything below this line
	// this is context state needed for decoding
	mu sync.Mutex

	// indicates that data is ready for processing
	cond *sync.Cond

	// the list of simultaneous sequences being evaluated
339
340
	seqs []*Sequence

341
342
343
344
	// seqs can have a maximum of parallel entries, which
	// is enfoced by seqSem
	seqsSem *semaphore.Weighted

345
346
347
	// KV cache
	cache *InputCache

348
349
350
	// next sequence for prompt processing to avoid starvation
	nextSeq int

351
352
353
	// multimodalHash generates hashes for comparing equality
	// of non-text data
	multimodalHash maphash.Hash
354
355
356
357
358
359
360
361
362
363
364
365
}

func (s *Server) allNil() bool {
	for _, item := range s.seqs {
		if item != nil {
			return false
		}
	}
	return true
}

func flushPending(seq *Sequence) bool {
366
367
368
369
370
371
372
373
374
375
376
	joined := strings.Join(seq.pendingResponses, "")
	seq.pendingResponses = []string{}

	// Check if there are any partial UTF-8 characters remaining.
	// We already check and queue as we are generating but some may
	// still make it here:
	// - Sequence is ending, e.g. generation limit has been hit
	// - Invalid characters in the middle of a string
	// This is a stricter check to ensure we never output invalid Unicode.
	for !utf8.ValidString(joined) {
		joined = joined[:len(joined)-1]
377
378
	}

379
380
381
382
383
384
385
386
387
388
	if len(joined) == 0 {
		return true
	}

	select {
	case seq.responses <- joined:
		return true
	case <-seq.quit:
		return false
	}
389
390
}

391
func (s *Server) removeSequence(seqIndex int, reason llm.DoneReason) {
392
393
394
395
396
397
398
399
	seq := s.seqs[seqIndex]

	flushPending(seq)
	seq.doneReason = reason
	close(seq.responses)
	close(seq.embedding)
	seq.cache.InUse = false
	s.seqs[seqIndex] = nil
400
	s.seqsSem.Release(1)
401
402
}

403
404
// track batch state between forwardBatch, computeBatch and predictForwardBatch

405
406
407
func (s *Server) run(ctx context.Context) {
	s.ready.Wait()

408
	var activeBatch batchState
409
410
411
412
	for {
		select {
		case <-ctx.Done():
			return
413
414
		case err := <-s.hardErrCh:
			panic(err)
415
		default:
416
417
			var err error
			activeBatch, err = s.forwardBatch(activeBatch)
418
419
420
			if err != nil {
				panic(err)
			}
421
			go s.computeBatch(activeBatch)
422
423
424
425
		}
	}
}

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
// forwardBatch will calculate a batch.
func (s *Server) forwardBatch(pendingBatch batchState) (nextBatch batchState, err error) {
	// If we have a pending batch still processing, wait until Compute has started
	// before setting up the next batch so the seqs inputs are ready to receive their
	// token values and we get the correct input pointers for the batchInputs
	if pendingBatch.ctx != nil {
		slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch waiting for compute to start", "pendingBatch.id", pendingBatch.id)
		<-pendingBatch.computeStartedCh
		slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch compute started, setting up next batch", "pendingBatch.id", pendingBatch.id, "id", s.batchID)
		nextBatch.inputsReadyCh = pendingBatch.outputsReadyCh // Chain the ouputs from the pending batch to the next inputs batch
	} else {
		slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch no pending batch detected", "batchID", s.batchID)
		// No pendingBatch, so the inputs will be ready in the seqs immediately
		nextBatch.inputsReadyCh = make(chan struct{}, 1)
		nextBatch.inputsReadyCh <- struct{}{}
	}

443
444
445
446
447
448
	s.mu.Lock()
	for s.allNil() {
		s.cond.Wait() // Wait until an item is added
	}
	defer s.mu.Unlock()

449
450
451
452
453
454
455
456
457
458
459
	nextBatch.ctx = s.model.Backend().NewContext()
	defer func() {
		if err != nil {
			nextBatch.ctx.Close()
			nextBatch.ctx = nil
		}
	}()
	nextBatch.id = s.batchID
	nextBatch.seqs = append([]*Sequence{}, s.seqs...)
	nextBatch.computeStartedCh = make(chan struct{}, 1)
	nextBatch.outputsReadyCh = make(chan struct{}, 1)
460

461
462
	// Prepare the seqs and batch, but defer the input token values as we may not be ready yet
	var batchInputs []*input.Input
Jesse Gross's avatar
Jesse Gross committed
463
	var batch input.Batch
464

465
466
467
468
469
	resumeSeq := -1
	seqIdx := s.nextSeq - 1
	for range s.seqs {
		seqIdx = (seqIdx + 1) % len(s.seqs)
		seq := s.seqs[seqIdx]
470
471
472
473
474
		if seq == nil {
			continue
		}

		// if past the num predict limit
475
		if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict {
476
			s.removeSequence(seqIdx, llm.DoneReasonLength)
477
			nextBatch.seqs[seqIdx] = nil
478
479
480
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
481
482
		if !s.cache.enabled {
			seq.inputs = append(seq.cache.Inputs, seq.inputs...)
483
			seq.cache.Inputs = []*input.Input{}
Jesse Gross's avatar
Jesse Gross committed
484
485
		}

486
487
		batchSize := s.batchSize

488
		for i, inp := range seq.inputs {
489
490
			// If we are required to put following inputs into a single batch then extend the
			// batch size. Since we are only extending the size the minimum amount possible, this
491
			// will cause a break if we have existing inputs.
492
493
494
495
496
			minBatch := 1 + inp.SameBatch
			if minBatch > batchSize {
				batchSize = minBatch
			}

497
498
499
500
501
502
503
504
			// Stop if the required batch would put us over the total batch size (including tokens
			// added by other sequences). If we haven't been able to add anything yet then pick up
			// here again for the next batch to avoid starvation, though we can opportunistically
			// check if other sequences can still squeeze something in.
			if len(batchInputs)+minBatch > batchSize {
				if len(seq.pendingInputs) == 0 && resumeSeq == -1 {
					resumeSeq = seqIdx
				}
505
506
				break
			}
Jesse Gross's avatar
Jesse Gross committed
507

508
509
510
511
512
513
514
515
			// If the sum of our working set (already processed tokens, tokens we added to this
			// batch, required following tokens) exceeds the context size, then trigger a shift
			// now so we don't have to do one later when we can't break the batch.
			if int32(len(seq.cache.Inputs)+len(seq.pendingInputs)+minBatch) > s.cache.numCtx {
				if len(seq.pendingInputs) != 0 {
					break
				}

516
				err = s.cache.ShiftCacheSlot(seq.cache, seq.numKeep)
517
				if err != nil {
518
519
520
521
522
					var reprocess *ErrReprocessInputs
					if errors.As(err, &reprocess) {
						// Prepend these inputs to the sequence's inputs queue for reprocessing
						seq.inputs = append(reprocess.Inputs, seq.inputs...)
						// Skip this sequence but continue processing the rest
523
524
						nextBatch.seqs[seqIdx] = nil // clear this sequence for this batch
						err = nil
525
526
						continue
					} else {
527
						return
528
					}
529
530
531
				}
			}

532
			batchInputs = append(batchInputs, seq.inputs[i])
533
			if inp.Multimodal != nil {
534
535
				var mm []input.Multimodal
				mm, err = seq.mmStore.getMultimodal(s.model.Backend(), nextBatch.ctx, inp.Multimodal, false)
536
				if err != nil {
537
					return
538
539
				}
				batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: len(batchInputs) - 1, Multimodal: mm})
540
541
			}

Jesse Gross's avatar
Jesse Gross committed
542
543
			batch.Positions = append(batch.Positions, int32(len(seq.cache.Inputs)+len(seq.pendingInputs)))
			batch.Sequences = append(batch.Sequences, seq.cache.Id)
Jesse Gross's avatar
Jesse Gross committed
544

Jesse Gross's avatar
Jesse Gross committed
545
			seq.iBatch = len(batch.Outputs)
546
			if i+1 == len(seq.inputs) {
547
				batch.Outputs = append(batch.Outputs, int32(len(batchInputs)-1))
Jesse Gross's avatar
Jesse Gross committed
548
			}
549
			slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch iBatch", "batchID", s.batchID, "seqIdx", seqIdx, "seq.iBatch", seq.iBatch, "i+1", i+1, "len(seq.inputs)", len(seq.inputs))
550
			seq.pendingInputs = append(seq.pendingInputs, inp)
551
		}
552
553

		seq.inputs = seq.inputs[len(seq.pendingInputs):]
554
555
	}

556
557
558
559
560
561
	if resumeSeq != -1 {
		s.nextSeq = resumeSeq
	} else {
		s.nextSeq = seqIdx + 1
	}

562
	if len(batchInputs) == 0 {
563
564
565
566
		slog.Log(context.TODO(), logutil.LevelTrace, "forwardBatch no batchInputs, going idle", "batchID", s.batchID)
		nextBatch.ctx.Close()
		nextBatch.ctx = nil
		return
567
	}
568
	s.batchID++
569

570
571
572
	// Actual batchInputs values will be injected into the batch.Inputs tensor before calling Compute
	batch.Inputs = nextBatch.ctx.Input().Empty(ml.DTypeI32, len(batchInputs))
	nextBatch.modelOutput, err = model.Forward(nextBatch.ctx, s.model, batch)
573
	if err != nil {
574
575
		err = fmt.Errorf("failed to build graph: %w", err)
		return
576
	}
577
578
	nextBatch.batchInputs = batchInputs
	nextBatch.batch = batch
579

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
	return
}

// Async processing of the next batch
func (s *Server) computeBatch(activeBatch batchState) {
	if activeBatch.ctx == nil {
		// Nothing to compute
		return
	}
	defer activeBatch.ctx.Close()

	// Wait until inputs are ready
	slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: waiting for inputs to be ready", "batchID", activeBatch.id)
	<-activeBatch.inputsReadyCh
	slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: inputs are ready", "batchID", activeBatch.id)
595

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
	// Once we complete, signal the next batch of inputs are ready
	// This will unblock the next computeBatch, or forwardBatch if new seqs come in
	defer func() {
		slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: outputs are ready", "batchID", activeBatch.id)
		activeBatch.outputsReadyCh <- struct{}{}
	}()

	s.mu.Lock()

	// Gather the actual input token values now that they're ready
	batchInputs := make([]int32, len(activeBatch.batchInputs))
	for i := range batchInputs {
		batchInputs[i] = activeBatch.batchInputs[i].Token
	}

	// Now we run part of the decoding algorithm to adjust the seq.inputs with placeholder tokens
	// so that forwardBatch can build a batchInputs set which will eventually contain the actual
	// decoded tokens.
	nextBatchTokens := make([]*input.Input, len(s.seqs))
	iBatches := make([]int, len(s.seqs)) // Record the iBatch values before releasing the lock
616
	for i, seq := range s.seqs {
617
		iBatches[i] = -1
618
619
620
		if seq == nil {
			continue
		}
621
622
623
624
		// Skip over any newly added or skipped sequences
		if activeBatch.seqs[i] == nil {
			continue
		}
625

626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
		// Detect if the sequence we're processing has already been completed and replaced
		// with a new sequence
		if seq != activeBatch.seqs[i] {
			slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: sequence replaced, discarding its results", "batchID", activeBatch.id, "seqIdx", i)
			continue
		}

		// Pending inputs will actually be in the cache after we call Compute.
		// However, we have already resolved any placeholder tokens.
		//
		// It's possible for incoming sequences to look at the values that we've
		// added to the cache here and start relying on them before we've done
		// the computation. This is OK as long as we ensure that this batch's
		// computation happens before any future batch's and we never fail
		// (unless we take down the whole runner).
641
642
		if len(seq.pendingInputs) > 0 {
			seq.cache.Inputs = append(seq.cache.Inputs, seq.pendingInputs...)
643
			seq.pendingInputs = []*input.Input{}
644
645
		}

646
647
		// don't sample prompt processing
		if len(seq.inputs) != 0 {
Jesse Gross's avatar
Jesse Gross committed
648
			if !s.cache.enabled {
649
650
651
				s.hardErrCh <- fmt.Errorf("caching disabled but unable to fit entire input in a batch")
				s.mu.Unlock()
				return
Jesse Gross's avatar
Jesse Gross committed
652
			}
653
654
655
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
656
		seq.numPredicted++
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
		nextToken := &input.Input{Token: 0} // placeholder we'll fill in after Compute/Floats
		seq.inputs = []*input.Input{nextToken}
		nextBatchTokens[i] = nextToken
		iBatches[i] = seq.iBatch
	}

	// At this point the seqs are ready for forwardBatch to move forward so unblock
	s.mu.Unlock()

	activeBatch.batch.Inputs.SetValueFromIntSlice(batchInputs)
	activeBatch.ctx.ComputeWithNotify(
		func() {
			slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: signaling computeStartedCh", "batchID", activeBatch.id)
			activeBatch.computeStartedCh <- struct{}{}
		},
		activeBatch.modelOutput)
	logits := activeBatch.modelOutput.Floats()

	slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: logits ready", "batchID", activeBatch.id)

	s.mu.Lock()
	defer s.mu.Unlock()

	slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: decoding", "batchID", activeBatch.id)
	for i, seq := range s.seqs {
		if seq == nil || nextBatchTokens[i] == nil {
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
686
		if seq.numPredicted == 1 {
687
688
689
690
691
			seq.startGenerationTime = time.Now()
		}

		// if done processing the prompt, generate an embedding and return
		if seq.embeddingOnly {
Jesse Gross's avatar
Jesse Gross committed
692
			// TODO(jessegross): Embedding support
693
			slog.Warn("generation of embedding outputs not yet supported", "id", activeBatch.id, "seqIdx", i)
694
			s.removeSequence(i, llm.DoneReasonStop)
695
			continue
696
697
698
		}

		// sample a token
699
700
701
		vocabSize := len(logits) / len(activeBatch.batch.Outputs)
		slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: vocab details", "batchID", activeBatch.id, "seqIdx", i, "len(logits)", len(logits), "len(activeBatch.batch.Outputs)", len(activeBatch.batch.Outputs), "vocabSize", vocabSize, "iBatches", iBatches)
		token, err := seq.sampler.Sample(logits[iBatches[i]*vocabSize : (iBatches[i]+1)*vocabSize])
Jesse Gross's avatar
Jesse Gross committed
702
		if err != nil {
703
704
			s.hardErrCh <- fmt.Errorf("failed to sample token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
705
		}
706

707
708
		nextBatchTokens[i].Token = token

709
		// if it's an end of sequence token, break
Jesse Gross's avatar
Jesse Gross committed
710
		if s.model.(model.TextProcessor).Is(token, model.SpecialEOS) {
711
712
713
			// TODO (jmorganca): we should send this back
			// as it's important for the /api/generate context
			// seq.responses <- piece
714
			slog.Log(context.TODO(), logutil.LevelTrace, "computeBatch: EOS", "batchID", activeBatch.id, "seqIdx", i)
715
			s.removeSequence(i, llm.DoneReasonStop)
716
717
718
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
719
720
		piece, err := s.model.(model.TextProcessor).Decode([]int32{token})
		if err != nil {
721
722
			s.hardErrCh <- fmt.Errorf("failed to decode token: %w", err)
			return
Jesse Gross's avatar
Jesse Gross committed
723
724
		}

725
726
727
		seq.pendingResponses = append(seq.pendingResponses, piece)
		sequence := strings.Join(seq.pendingResponses, "")

Jesse Gross's avatar
Jesse Gross committed
728
		if ok, stop := common.FindStop(sequence, seq.stop); ok {
729
730
731
732
			slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop)

			var tokenTruncated bool
			origLen := len(seq.pendingResponses)
Jesse Gross's avatar
Jesse Gross committed
733
			seq.pendingResponses, tokenTruncated = common.TruncateStop(seq.pendingResponses, stop)
734
735
736
737
738
739
740
741
742
743
744
745
746
747
			newLen := len(seq.pendingResponses)

			// Update the cache based on the tokens that will be returned:
			// - We have 1 token more than is currently in the cache because
			// the last one generated wasn't submitted to Decode
			// - Remove any stop sequences that we stripped out
			// - If truncateStop removed a portion of a token, drop that
			// - As defense-in-depth, if truncatedToken didn't find a stop token
			// remove the extra one that we added to the cache len
			tokenLen := len(seq.cache.Inputs) + 1
			tokenLen -= origLen - newLen
			if tokenTruncated || origLen == newLen {
				tokenLen--
			}
748

749
			seq.cache.Inputs = seq.cache.Inputs[:tokenLen]
750

751
			s.removeSequence(i, llm.DoneReasonStop)
752
753
754
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
755
		if common.ContainsStopSuffix(sequence, seq.stop) {
756
757
758
			continue
		}

Jesse Gross's avatar
Jesse Gross committed
759
		if common.IncompleteUnicode(sequence) {
760
761
762
763
			continue
		}

		if !flushPending(seq) {
764
			s.removeSequence(i, llm.DoneReasonConnectionClosed)
765
766
767
768
769
		}
	}
}

func (s *Server) completion(w http.ResponseWriter, r *http.Request) {
770
	var req llm.CompletionRequest
771
772
773
774
775
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "Bad request", http.StatusBadRequest)
		return
	}

776
777
778
779
780
	if req.Options == nil {
		opts := api.DefaultOptions()
		req.Options = &opts
	}

781
782
783
784
785
786
787
788
789
790
	// Set the headers to indicate streaming
	w.Header().Set("Content-Type", "application/json")
	w.Header().Set("Transfer-Encoding", "chunked")

	flusher, ok := w.(http.Flusher)
	if !ok {
		http.Error(w, "Streaming not supported", http.StatusInternalServerError)
		return
	}

791
	var grammar *sample.GrammarSampler
792
793
	var err error
	if req.Grammar != "" {
794
		grammar, err = sample.NewGrammarSampler(s.model.(model.TextProcessor), req.Grammar)
795
796
797
798
		if err != nil {
			http.Error(w, "failed to load model vocabulary required for format", http.StatusInternalServerError)
			return
		}
799
		defer grammar.Free()
800
801
	}

802
	sampler := sample.NewSampler(
803
804
805
806
807
		req.Options.Temperature,
		req.Options.TopK,
		req.Options.TopP,
		req.Options.MinP,
		req.Options.Seed,
808
		grammar,
809
810
	)

811
	seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{
812
813
814
		numPredict: req.Options.NumPredict,
		stop:       req.Options.Stop,
		numKeep:    int32(req.Options.NumKeep),
815
		sampler:    sampler,
Jesse Gross's avatar
Jesse Gross committed
816
		embedding:  false,
817
818
819
820
821
822
	})
	if err != nil {
		http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError)
		return
	}

823
	// Ensure there is a place to put the sequence, released when removed from s.seqs
824
	if err := s.seqsSem.Acquire(r.Context(), 1); err != nil {
825
826
827
		if errors.Is(err, context.Canceled) {
			slog.Info("aborting completion request due to client closing the connection")
		} else {
828
			http.Error(w, fmt.Sprintf("Failed to acquire semaphore: %v", err), http.StatusInternalServerError)
829
		}
830
831
832
		return
	}

833
	s.mu.Lock()
834
	found := false
835
836
	for i, sq := range s.seqs {
		if sq == nil {
837
			seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs)
838
839
			if err != nil {
				s.mu.Unlock()
840
				s.seqsSem.Release(1)
841
842
843
				http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError)
				return
			}
844

845
846
			s.seqs[i] = seq
			s.cond.Signal()
847
			found = true
848
849
850
851
852
			break
		}
	}
	s.mu.Unlock()

853
	if !found {
854
		s.seqsSem.Release(1)
855
856
857
858
		http.Error(w, "could not find an available sequence", http.StatusInternalServerError)
		return
	}

859
860
861
862
863
864
865
	for {
		select {
		case <-r.Context().Done():
			close(seq.quit)
			return
		case content, ok := <-seq.responses:
			if ok {
866
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
867
868
869
870
871
872
873
874
875
					Content: content,
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
					close(seq.quit)
					return
				}

				flusher.Flush()
			} else {
876
877
				if err := json.NewEncoder(w).Encode(&llm.CompletionResponse{
					Done:               true,
878
					DoneReason:         seq.doneReason,
879
880
881
882
					PromptEvalCount:    seq.numPromptInputs,
					PromptEvalDuration: seq.startGenerationTime.Sub(seq.startProcessingTime),
					EvalCount:          seq.numPredicted,
					EvalDuration:       time.Since(seq.startGenerationTime),
883
884
885
886
887
888
889
890
891
892
893
894
				}); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError)
				}

				return
			}
		}
	}
}

func (s *Server) health(w http.ResponseWriter, r *http.Request) {
	w.Header().Set("Content-Type", "application/json")
895
896
	if err := json.NewEncoder(w).Encode(&llm.ServerStatusResponse{
		Status:   s.status,
897
898
899
900
901
902
		Progress: s.progress,
	}); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
	}
}

903
func (s *Server) reserveWorstCaseGraph() error {
904
905
906
	ctx := s.model.Backend().NewContext()
	defer ctx.Close()

907
	var err error
908
909
910
911
	inputs := make([]*input.Input, s.batchSize)
	for i := range inputs {
		inputs[i] = &input.Input{}
	}
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
	mmStore := newMultimodalStore()

	// Multimodal strategy:
	// - Encode a 2048x2048 image. This assumes that a single image of this
	//   size is sufficient to trigger the worst case. This is currently true
	//   because for existing models, only a single image fits in a batch.
	// - Add the embedding to a full batch of tokens - this is necessary because
	//   the model may be looking for non-image data, such as <image> tags.
	// - Run PostTokenize to execute any transformations between generated
	//   embeddings and what the forward pass expects.
	// - The result may now be larger than a batch (images may not fit in a
	//   single batch), so trim based on what will fit and must be grouped together.
	// - Fill out the rest of the space with text tokens.
	if multimodalProcessor, ok := s.model.(model.MultimodalProcessor); ok {
		mmCtx := s.model.Backend().NewContext()
		defer mmCtx.Close()

		img := image.NewGray(image.Rect(0, 0, 2048, 2048))
		var buf bytes.Buffer
		bmp.Encode(&buf, img)

		if inputs[0].Multimodal, err = multimodalProcessor.EncodeMultimodal(mmCtx, buf.Bytes()); err == nil {
			mmStore.addMultimodal(inputs[0].Multimodal)

			inputs, err = multimodalProcessor.PostTokenize(inputs)
			if err != nil {
				return err
			}

			for i, inp := range inputs {
				minBatch := 1 + inp.SameBatch
				if minBatch > s.batchSize {
					inputs = inputs[i:min(i+minBatch, len(inputs))]
					break
				} else if i+minBatch > s.batchSize {
					inputs = inputs[:i]
					break
				}
			}

			if len(inputs) < s.batchSize {
953
				newInputs := make([]*input.Input, s.batchSize)
954
				copy(newInputs, inputs)
955
956
957
				for i := len(inputs); i < s.batchSize; i++ {
					newInputs[i] = &input.Input{}
				}
958
959
960
961
962
				inputs = newInputs
			}
		}
	}

963
964
	var batch input.Batch

965
	batchInputs := make([]int32, len(inputs))
966
967
	batch.Positions = make([]int32, len(inputs))
	batch.Sequences = make([]int, len(inputs))
968
969
970
971
972
973
974
975
976
977
	for i, inp := range inputs {
		batchInputs[i] = inp.Token
		if inp.Multimodal != nil {
			mm, err := mmStore.getMultimodal(s.model.Backend(), ctx, inp.Multimodal, true)
			if err != nil {
				return err
			}
			batch.Multimodal = append(batch.Multimodal, input.MultimodalIndex{Index: i, Multimodal: mm})
		}

978
979
980
981
982
983
984
985
		batch.Positions[i] = int32(i)
	}

	batch.Outputs = make([]int32, s.parallel)
	for i := range batch.Outputs {
		batch.Outputs[i] = int32(i)
	}

986
	batch.Inputs = ctx.Input().FromIntSlice(batchInputs, len(batchInputs))
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

	cache := s.model.Config().Cache
	if cache != nil {
		err := cache.StartForward(ctx, batch, true)
		if err != nil {
			return err
		}
	}

	t, err := s.model.Forward(ctx, batch)
	if err != nil {
		return err
	}

1001
	ctx.Forward(t).Reserve()
1002
1003

	return nil
1004
}
1005

Jesse Gross's avatar
Jesse Gross committed
1006
1007
1008
// allocModel pre-allocates the maximum needed memory for a model
// based on the given parameters
func (s *Server) allocModel(
1009
	mpath string,
1010
	params ml.BackendParams,
Jesse Gross's avatar
Jesse Gross committed
1011
	loraPath []string,
Jesse Gross's avatar
Jesse Gross committed
1012
	parallel int,
1013
	kvCacheType string,
Jesse Gross's avatar
Jesse Gross committed
1014
	kvSize int,
1015
	multiUserCache bool,
Jesse Gross's avatar
Jesse Gross committed
1016
1017
1018
1019
) (panicErr error) {
	// Convert memory allocation panics to errors
	defer func() {
		if r := recover(); r != nil {
1020
			debug.PrintStack()
Jesse Gross's avatar
Jesse Gross committed
1021
1022
1023
1024
1025
1026
1027
1028
			if err, ok := r.(error); ok {
				panicErr = err
			} else {
				panic(r)
			}
		}
	}()

1029
	var err error
1030
	s.model, err = model.New(mpath, params)
1031
	if err != nil {
1032
		return err
1033
	}
1034

Jesse Gross's avatar
Jesse Gross committed
1035
	// TODO(jessegross): LoRA loading
Jesse Gross's avatar
Jesse Gross committed
1036
	if len(loraPath) > 0 {
1037
		return errors.New("loras are not yet implemented")
1038
1039
	}

1040
	s.cache, err = NewInputCache(s.model, kvCacheType, int32(kvSize), parallel, s.batchSize, multiUserCache)
1041
	if err != nil {
1042
		return err
1043
	}
1044

Jesse Gross's avatar
Jesse Gross committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
	if !s.cache.enabled && parallel > 1 {
		parallel = 1
		slog.Warn("model does not support caching, disabling parallel processing")
	}

	s.parallel = parallel
	s.seqs = make([]*Sequence, s.parallel)
	s.seqsSem = semaphore.NewWeighted(int64(s.parallel))

1054
1055
1056
	return s.reserveWorstCaseGraph()
}

Jesse Gross's avatar
Jesse Gross committed
1057
1058
1059
1060
1061
1062
1063
// closeModel frees all memory associated with a model
func (s *Server) closeModel() {
	s.cache.Close()
	s.cache = nil
	if s.model != nil {
		s.model.Backend().Close()
		s.model = nil
1064
	}
Jesse Gross's avatar
Jesse Gross committed
1065
}
1066

Jesse Gross's avatar
Jesse Gross committed
1067
1068
1069
1070
// loadModel loads the weights for a model. The memory must already
// have been allocated with allocModel
func (s *Server) loadModel() {
	err := s.model.Backend().Load(context.TODO(),
1071
1072
1073
1074
		func(progress float32) {
			s.progress = progress
		})
	if err != nil {
Jesse Gross's avatar
Jesse Gross committed
1075
		panic(fmt.Errorf("failed to load model: %v", err))
1076
1077
	}

1078
	s.status = llm.ServerStatusReady
1079
1080
1081
	s.ready.Done()
}

Jesse Gross's avatar
Jesse Gross committed
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
// load is the handler called by the Ollama server to process different
// load operations
func (s *Server) load(w http.ResponseWriter, r *http.Request) {
	s.loadMu.Lock()
	defer s.loadMu.Unlock()

	w.Header().Set("Content-Type", "application/json")

	if s.status != llm.ServerStatusLaunched {
		http.Error(w, "model already loaded", http.StatusInternalServerError)
		return
	}

	var req llm.LoadRequest
	if err := json.NewDecoder(r.Body).Decode(&req); err != nil {
		http.Error(w, "bad request", http.StatusBadRequest)
		return
	}

	slog.Info("load", "request", req)

	if req.Operation == llm.LoadOperationClose {
		s.closeModel()
		if err := json.NewEncoder(w).Encode(&llm.LoadResponse{}); err != nil {
			http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		}
		return
	}

	s.lastLoad.Operation = req.Operation
	loadModel := s.model == nil || !reflect.DeepEqual(req, s.lastLoad)

	s.lastLoad = req

	if loadModel {
		s.closeModel()

		params := ml.BackendParams{
			AllocMemory:    req.Operation != llm.LoadOperationFit,
			NumThreads:     req.NumThreads,
			GPULayers:      req.GPULayers,
			FlashAttention: req.FlashAttention,
		}

		s.batchSize = req.BatchSize

		err := s.allocModel(s.modelPath, params, req.LoraPath, req.Parallel, req.KvCacheType, req.KvSize, req.MultiUserCache)
		if err != nil {
			s.closeModel()

			var noMem ml.ErrNoMem
			if errors.As(err, &noMem) {
				resp := llm.LoadResponse{Success: false, Memory: noMem.BackendMemory}
				if err := json.NewEncoder(w).Encode(&resp); err != nil {
					http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
				}

				return
			}

			http.Error(w, fmt.Sprintf("failed to initialize model: %v", err), http.StatusInternalServerError)
			return
		}
	}

	mem := s.model.Backend().BackendMemory()

	switch req.Operation {
	case llm.LoadOperationFit:
		// LoadOperationFit can't be used for anything else, so just close it
		s.closeModel()

	// LoadOperationAlloc should stay open for future operations

	case llm.LoadOperationCommit:
		s.status = llm.ServerStatusLoadingModel
		go s.loadModel()
	}

	resp := llm.LoadResponse{Success: true, Memory: mem}
	if err := json.NewEncoder(w).Encode(&resp); err != nil {
		http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError)
		return
	}
}

1168
1169
1170
1171
func Execute(args []string) error {
	fs := flag.NewFlagSet("runner", flag.ExitOnError)
	mpath := fs.String("model", "", "Path to model binary file")
	port := fs.Int("port", 8080, "Port to expose the server on")
1172
	_ = fs.Bool("verbose", false, "verbose output (default: disabled)")
1173

1174
1175
1176
1177
1178
1179
	fs.Usage = func() {
		fmt.Fprintf(fs.Output(), "Runner usage\n")
		fs.PrintDefaults()
	}
	if err := fs.Parse(args); err != nil {
		return err
1180
	}
1181
	slog.SetDefault(logutil.NewLogger(os.Stderr, envconfig.LogLevel()))
Jesse Gross's avatar
Jesse Gross committed
1182
	slog.Info("starting ollama engine")
1183

1184
1185
1186
	ctx, cancel := context.WithCancel(context.Background())
	defer cancel()

Jesse Gross's avatar
Jesse Gross committed
1187
1188
1189
	server := &Server{
		modelPath: *mpath,
		status:    llm.ServerStatusLaunched,
1190
		hardErrCh: make(chan error, 1),
1191
1192
	}

Jesse Gross's avatar
Jesse Gross committed
1193
1194
	server.cond = sync.NewCond(&server.mu)
	server.ready.Add(1)
1195
1196
1197
1198
1199
1200
1201

	go server.run(ctx)

	addr := "127.0.0.1:" + strconv.Itoa(*port)
	listener, err := net.Listen("tcp", addr)
	if err != nil {
		fmt.Println("Listen error:", err)
1202
		return err
1203
1204
1205
1206
	}
	defer listener.Close()

	mux := http.NewServeMux()
1207
	// TODO: support embeddings
Jesse Gross's avatar
Jesse Gross committed
1208
	mux.HandleFunc("POST /load", server.load)
1209
1210
1211
1212
1213
1214
	mux.HandleFunc("POST /embedding", func(w http.ResponseWriter, r *http.Request) {
		http.Error(w, "this model does not support embeddings", http.StatusNotImplemented)
	})

	mux.HandleFunc("POST /completion", server.completion)
	mux.HandleFunc("GET /health", server.health)
1215
1216
1217
1218
1219
1220
1221
1222

	httpServer := http.Server{
		Handler: mux,
	}

	log.Println("Server listening on", addr)
	if err := httpServer.Serve(listener); err != nil {
		log.Fatal("server error:", err)
1223
		return err
1224
1225
	}

1226
	return nil
1227
}