create_data.py 13.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
4

5
6
7
8
9
from tools.dataset_converters import indoor_converter as indoor
from tools.dataset_converters import kitti_converter as kitti
from tools.dataset_converters import lyft_converter as lyft_converter
from tools.dataset_converters import nuscenes_converter as nuscenes_converter
from tools.dataset_converters.create_gt_database import (
Wenbo Yu's avatar
Wenbo Yu committed
10
    GTDatabaseCreater, create_groundtruth_database)
VVsssssk's avatar
VVsssssk committed
11
from tools.dataset_converters.update_infos_to_v2 import update_pkl_infos
zhangwenwei's avatar
zhangwenwei committed
12
13


14
15
16
17
18
def kitti_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    with_plane=False):
wangtai's avatar
wangtai committed
19
20
21
22
23
24
25
26
27
28
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
29
30
        with_plane (bool, optional): Whether to use plane information.
            Default: False.
wangtai's avatar
wangtai committed
31
    """
32
    kitti.create_kitti_info_file(root_path, info_prefix, with_plane)
zhangwenwei's avatar
zhangwenwei committed
33
    kitti.create_reduced_point_cloud(root_path, info_prefix)
34

VVsssssk's avatar
VVsssssk committed
35
36
37
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
38
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
VVsssssk's avatar
VVsssssk committed
39
40
41
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_trainval_path)
42
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_test_path)
zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
VVsssssk's avatar
VVsssssk committed
47
        f'{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
48
49
50
51
52
53
54
55
56
57
58
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
59
60
61
62
63
64
65
66
67
68
69
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
70
71
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
wangtai's avatar
wangtai committed
72
    """
zhangwenwei's avatar
zhangwenwei committed
73
74
75
76
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
VVsssssk's avatar
VVsssssk committed
77
78
        info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_test_path)
zhangwenwei's avatar
zhangwenwei committed
79
80
        return

VVsssssk's avatar
VVsssssk committed
81
82
83
84
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
85
    create_groundtruth_database(dataset_name, root_path, info_prefix,
VVsssssk's avatar
VVsssssk committed
86
                                f'{info_prefix}_infos_train.pkl')
wangtai's avatar
wangtai committed
87
88


89
def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10):
wangtai's avatar
wangtai committed
90
91
    """Prepare data related to Lyft dataset.

92
93
94
    Related data consists of '.pkl' files recording basic infos.
    Although the ground truth database and 2D annotations are not used in
    Lyft, it can also be generated like nuScenes.
wangtai's avatar
wangtai committed
95
96
97
98
99

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
100
101
        max_sweeps (int, optional): Number of input consecutive frames.
            Defaults to 10.
wangtai's avatar
wangtai committed
102
103
104
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)
VVsssssk's avatar
VVsssssk committed
105
106
107
108
109
110
111
112
    if version == 'v1.01-test':
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_test_path)
    elif version == 'v1.01-train':
        info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
        info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_train_path)
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
113

zhangwenwei's avatar
zhangwenwei committed
114

liyinhao's avatar
liyinhao committed
115
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
116
117
118
119
120
121
122
123
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
124
125
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
126
127
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
128
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
VVsssssk's avatar
VVsssssk committed
129
130
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
131
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_test_path)
132
133


134
135
136
137
138
139
140
141
142
143
144
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
145
146
147
148
    splits = [f'Area_{i}' for i in [1, 2, 3, 4, 5, 6]]
    for split in splits:
        filename = osp.join(out_dir, f'{info_prefix}_infos_{split}.pkl')
        update_pkl_infos('s3dis', out_dir=out_dir, pkl_path=filename)
149
150


liyinhao's avatar
liyinhao committed
151
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
152
153
154
155
156
157
158
159
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
160
161
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
162
163
164
165
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
166
167


Wenwei Zhang's avatar
Wenwei Zhang committed
168
169
170
171
172
173
174
175
176
177
178
179
180
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
                    max_sweeps=5):
    """Prepare the info file for waymo dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
181
182
183
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 5. Here we store pose information of these frames
            for later use.
Wenwei Zhang's avatar
Wenwei Zhang committed
184
    """
185
    from tools.dataset_converters import waymo_converter as waymo
186

187
188
189
    splits = [
        'training', 'validation', 'testing', 'testing_3d_camera_only_detection'
    ]
Wenwei Zhang's avatar
Wenwei Zhang committed
190
191
192
193
194
195
196
197
198
199
200
    for i, split in enumerate(splits):
        load_dir = osp.join(root_path, 'waymo_format', split)
        if split == 'validation':
            save_dir = osp.join(out_dir, 'kitti_format', 'training')
        else:
            save_dir = osp.join(out_dir, 'kitti_format', split)
        converter = waymo.Waymo2KITTI(
            load_dir,
            save_dir,
            prefix=str(i),
            workers=workers,
201
202
            test_mode=(split
                       in ['testing', 'testing_3d_camera_only_detection']))
Wenwei Zhang's avatar
Wenwei Zhang committed
203
        converter.convert()
204
205
206
207

    from tools.dataset_converters.waymo_converter import \
        create_ImageSets_img_ids
    create_ImageSets_img_ids(osp.join(out_dir, 'kitti_format'), splits)
Wenwei Zhang's avatar
Wenwei Zhang committed
208
209
    # Generate waymo infos
    out_dir = osp.join(out_dir, 'kitti_format')
210
211
    kitti.create_waymo_info_file(
        out_dir, info_prefix, max_sweeps=max_sweeps, workers=workers)
VVsssssk's avatar
VVsssssk committed
212
213
214
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
215
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
216
217
218
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_trainval_path)
219
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_test_path)
220
    GTDatabaseCreater(
Wenwei Zhang's avatar
Wenwei Zhang committed
221
222
223
        'WaymoDataset',
        out_dir,
        info_prefix,
224
        f'{info_prefix}_infos_train.pkl',
Wenwei Zhang's avatar
Wenwei Zhang committed
225
        relative_path=False,
226
227
        with_mask=False,
        num_worker=workers).create()
Wenwei Zhang's avatar
Wenwei Zhang committed
228
229


zhangwenwei's avatar
zhangwenwei committed
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
249
250
251
252
parser.add_argument(
    '--with-plane',
    action='store_true',
    help='Whether to use plane information for kitti.')
zhangwenwei's avatar
zhangwenwei committed
253
254
255
256
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
257
    required=False,
zhangwenwei's avatar
zhangwenwei committed
258
259
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
260
261
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
262
263
264
args = parser.parse_args()

if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
265
266
    from mmdet3d.utils import register_all_modules
    register_all_modules()
267

zhangwenwei's avatar
zhangwenwei committed
268
269
270
271
272
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
273
274
            out_dir=args.out_dir,
            with_plane=args.with_plane)
zhangwenwei's avatar
zhangwenwei committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
301
302
303
304
305
306
307
308
309
310
311
312
313
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            max_sweeps=args.max_sweeps)
Wenwei Zhang's avatar
Wenwei Zhang committed
314
315
316
317
318
319
320
321
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps)
322
323
324
325
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
326
327
            out_dir=args.out_dir,
            workers=args.workers)
328
329
330
331
332
333
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
334
335
336
337
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
338
339
            out_dir=args.out_dir,
            workers=args.workers)
340
341
    else:
        raise NotImplementedError(f'Don\'t support {args.dataset} dataset.')