kitti_dataset.py 31.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import copy
zhangwenwei's avatar
zhangwenwei committed
3
4
import os
import tempfile
5
6
7
8
from os import path as osp

import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
9
import torch
zhangwenwei's avatar
zhangwenwei committed
10
from mmcv.utils import print_log
zhangwenwei's avatar
zhangwenwei committed
11

zhangwenwei's avatar
zhangwenwei committed
12
from mmdet.datasets import DATASETS
13
from ..core import show_multi_modality_result, show_result
14
from ..core.bbox import (Box3DMode, CameraInstance3DBoxes, Coord3DMode,
15
                         LiDARInstance3DBoxes, points_cam2img)
zhangwenwei's avatar
zhangwenwei committed
16
from .custom_3d import Custom3DDataset
17
from .pipelines import Compose
zhangwenwei's avatar
zhangwenwei committed
18
19


20
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
21
class KittiDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
22
    r"""KITTI Dataset.
wangtai's avatar
wangtai committed
23

zhangwenwei's avatar
zhangwenwei committed
24
25
    This class serves as the API for experiments on the `KITTI Dataset
    <http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d>`_.
wangtai's avatar
wangtai committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        split (str): Split of input data.
        pts_prefix (str, optional): Prefix of points files.
            Defaults to 'velodyne'.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes

wangtai's avatar
wangtai committed
44
45
46
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
47
48
49
50
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
51
52
53
        pcd_limit_range (list, optional): The range of point cloud used to
            filter invalid predicted boxes.
            Default: [0, -40, -3, 70.4, 40, 0.0].
wangtai's avatar
wangtai committed
54
    """
zhangwenwei's avatar
zhangwenwei committed
55
56
57
    CLASSES = ('car', 'pedestrian', 'cyclist')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
58
                 data_root,
zhangwenwei's avatar
zhangwenwei committed
59
60
                 ann_file,
                 split,
zhangwenwei's avatar
zhangwenwei committed
61
                 pts_prefix='velodyne',
zhangwenwei's avatar
zhangwenwei committed
62
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
63
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
64
                 modality=None,
65
66
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
Wenwei Zhang's avatar
Wenwei Zhang committed
67
68
                 test_mode=False,
                 pcd_limit_range=[0, -40, -3, 70.4, 40, 0.0]):
zhangwenwei's avatar
zhangwenwei committed
69
70
71
72
73
74
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
75
76
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
77
78
            test_mode=test_mode)

Wenwei Zhang's avatar
Wenwei Zhang committed
79
        self.split = split
zhangwenwei's avatar
zhangwenwei committed
80
        self.root_split = os.path.join(self.data_root, split)
zhangwenwei's avatar
zhangwenwei committed
81
        assert self.modality is not None
Wenwei Zhang's avatar
Wenwei Zhang committed
82
        self.pcd_limit_range = pcd_limit_range
zhangwenwei's avatar
zhangwenwei committed
83
        self.pts_prefix = pts_prefix
zhangwenwei's avatar
zhangwenwei committed
84

zhangwenwei's avatar
zhangwenwei committed
85
    def _get_pts_filename(self, idx):
86
87
88
89
90
91
92
93
        """Get point cloud filename according to the given index.

        Args:
            index (int): Index of the point cloud file to get.

        Returns:
            str: Name of the point cloud file.
        """
zhangwenwei's avatar
zhangwenwei committed
94
95
96
        pts_filename = osp.join(self.root_split, self.pts_prefix,
                                f'{idx:06d}.bin')
        return pts_filename
zhangwenwei's avatar
zhangwenwei committed
97

zhangwenwei's avatar
zhangwenwei committed
98
    def get_data_info(self, index):
99
100
101
102
103
104
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
105
            dict: Data information that will be passed to the data
zhangwenwei's avatar
zhangwenwei committed
106
                preprocessing pipelines. It includes the following keys:
107

wangtai's avatar
wangtai committed
108
109
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
110
                - img_prefix (str): Prefix of image files.
wangtai's avatar
wangtai committed
111
                - img_info (dict): Image info.
112
                - lidar2img (list[np.ndarray], optional): Transformations
wangtai's avatar
wangtai committed
113
114
                    from lidar to different cameras.
                - ann_info (dict): Annotation info.
115
        """
zhangwenwei's avatar
zhangwenwei committed
116
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
117
        sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
118
        img_filename = os.path.join(self.data_root,
zhangwenwei's avatar
zhangwenwei committed
119
120
                                    info['image']['image_path'])

zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
125
126
        # TODO: consider use torch.Tensor only
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c

zhangwenwei's avatar
zhangwenwei committed
127
        pts_filename = self._get_pts_filename(sample_idx)
zhangwenwei's avatar
zhangwenwei committed
128
129
        input_dict = dict(
            sample_idx=sample_idx,
zhangwenwei's avatar
zhangwenwei committed
130
            pts_filename=pts_filename,
zhangwenwei's avatar
zhangwenwei committed
131
132
            img_prefix=None,
            img_info=dict(filename=img_filename),
zhangwenwei's avatar
zhangwenwei committed
133
134
135
            lidar2img=lidar2img)

        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
136
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
137
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
138
139
140
141

        return input_dict

    def get_ann_info(self, index):
142
143
144
145
146
147
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
148
            dict: annotation information consists of the following keys:
149

150
                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
wangtai's avatar
wangtai committed
151
152
153
154
155
                    3D ground truth bboxes.
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - gt_bboxes (np.ndarray): 2D ground truth bboxes.
                - gt_labels (np.ndarray): Labels of ground truths.
                - gt_names (list[str]): Class names of ground truths.
156
157
                - difficulty (int): Difficulty defined by KITTI.
                    0, 1, 2 represent xxxxx respectively.
158
        """
zhangwenwei's avatar
zhangwenwei committed
159
        # Use index to get the annos, thus the evalhook could also use this api
zhangwenwei's avatar
zhangwenwei committed
160
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
161
162
163
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        if 'plane' in info:
            # convert ground plane to velodyne coordinates
            reverse = np.linalg.inv(rect @ Trv2c)

            (plane_norm_cam,
             plane_off_cam) = (info['plane'][:3],
                               -info['plane'][:3] * info['plane'][3])
            plane_norm_lidar = \
                (reverse[:3, :3] @ plane_norm_cam[:, None])[:, 0]
            plane_off_lidar = (
                reverse[:3, :3] @ plane_off_cam[:, None][:, 0] +
                reverse[:3, 3])
            plane_lidar = np.zeros_like(plane_norm_lidar, shape=(4, ))
            plane_lidar[:3] = plane_norm_lidar
            plane_lidar[3] = -plane_norm_lidar.T @ plane_off_lidar
        else:
            plane_lidar = None

182
        difficulty = info['annos']['difficulty']
zhangwenwei's avatar
zhangwenwei committed
183
184
        annos = info['annos']
        # we need other objects to avoid collision when sample
185
        annos = self.remove_dontcare(annos)
zhangwenwei's avatar
zhangwenwei committed
186
187
188
189
190
191
        loc = annos['location']
        dims = annos['dimensions']
        rots = annos['rotation_y']
        gt_names = annos['name']
        gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                      axis=1).astype(np.float32)
192
193
194

        # convert gt_bboxes_3d to velodyne coordinates
        gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
195
            self.box_mode_3d, np.linalg.inv(rect @ Trv2c))
zhangwenwei's avatar
zhangwenwei committed
196
197
198
199
200
201
202
203
204
205
206
207
        gt_bboxes = annos['bbox']

        selected = self.drop_arrays_by_name(gt_names, ['DontCare'])
        gt_bboxes = gt_bboxes[selected].astype('float32')
        gt_names = gt_names[selected]

        gt_labels = []
        for cat in gt_names:
            if cat in self.CLASSES:
                gt_labels.append(self.CLASSES.index(cat))
            else:
                gt_labels.append(-1)
Wenwei Zhang's avatar
Wenwei Zhang committed
208
        gt_labels = np.array(gt_labels).astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
209
        gt_labels_3d = copy.deepcopy(gt_labels)
zhangwenwei's avatar
zhangwenwei committed
210
211
212

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
213
            gt_labels_3d=gt_labels_3d,
zhangwenwei's avatar
zhangwenwei committed
214
            bboxes=gt_bboxes,
liyinhao's avatar
liyinhao committed
215
            labels=gt_labels,
216
            gt_names=gt_names,
217
            plane=plane_lidar,
218
            difficulty=difficulty)
zhangwenwei's avatar
zhangwenwei committed
219
220
221
        return anns_results

    def drop_arrays_by_name(self, gt_names, used_classes):
222
223
224
225
226
227
228
229
230
        """Drop irrelevant ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be dropped.
        """
zhangwenwei's avatar
zhangwenwei committed
231
232
233
234
235
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
236
237
238
239
240
241
242
243
244
        """Keep useful ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be keeped.
        """
zhangwenwei's avatar
zhangwenwei committed
245
246
247
248
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

249
    def remove_dontcare(self, ann_info):
250
251
252
253
254
255
256
257
258
        """Remove annotations that do not need to be cared.

        Args:
            ann_info (dict): Dict of annotation infos. The ``'DontCare'``
                annotations will be removed according to ann_file['name'].

        Returns:
            dict: Annotations after filtering.
        """
259
260
261
262
263
264
265
266
267
        img_filtered_annotations = {}
        relevant_annotation_indices = [
            i for i, x in enumerate(ann_info['name']) if x != 'DontCare'
        ]
        for key in ann_info.keys():
            img_filtered_annotations[key] = (
                ann_info[key][relevant_annotation_indices])
        return img_filtered_annotations

268
269
270
271
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
272
273
274
275
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
276
            pklfile_prefix (str): The prefix of pkl files. It includes
277
278
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
279
            submission_prefix (str): The prefix of submitted files. It
280
281
282
283
284
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.

        Returns:
285
286
            tuple: (result_files, tmp_dir), result_files is a dict containing
                the json filepaths, tmp_dir is the temporal directory created
287
288
                for saving json files when jsonfile_prefix is not specified.
        """
289
290
291
292
293
294
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

zhangwenwei's avatar
zhangwenwei committed
295
        if not isinstance(outputs[0], dict):
zhangwenwei's avatar
zhangwenwei committed
296
            result_files = self.bbox2result_kitti2d(outputs, self.CLASSES,
zhangwenwei's avatar
zhangwenwei committed
297
                                                    pklfile_prefix,
298
                                                    submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0]:
            result_files = dict()
            for name in outputs[0]:
                results_ = [out[name] for out in outputs]
                pklfile_prefix_ = pklfile_prefix + name
                if submission_prefix is not None:
                    submission_prefix_ = submission_prefix + name
                else:
                    submission_prefix_ = None
                if 'img' in name:
                    result_files = self.bbox2result_kitti2d(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                else:
                    result_files_ = self.bbox2result_kitti(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                result_files[name] = result_files_
zhangwenwei's avatar
zhangwenwei committed
317
        else:
zhangwenwei's avatar
zhangwenwei committed
318
            result_files = self.bbox2result_kitti(outputs, self.CLASSES,
319
320
                                                  pklfile_prefix,
                                                  submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
321
        return result_files, tmp_dir
zhangwenwei's avatar
zhangwenwei committed
322

323
324
325
326
327
    def evaluate(self,
                 results,
                 metric=None,
                 logger=None,
                 pklfile_prefix=None,
liyinhao's avatar
liyinhao committed
328
329
                 submission_prefix=None,
                 show=False,
330
331
                 out_dir=None,
                 pipeline=None):
332
333
334
        """Evaluation in KITTI protocol.

        Args:
wangtai's avatar
wangtai committed
335
            results (list[dict]): Testing results of the dataset.
336
337
338
            metric (str | list[str], optional): Metrics to be evaluated.
                Default: None.
            logger (logging.Logger | str, optional): Logger used for printing
339
                related information during evaluation. Default: None.
340
            pklfile_prefix (str, optional): The prefix of pkl files, including
341
342
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
343
            submission_prefix (str, optional): The prefix of submission data.
344
                If not specified, the submission data will not be generated.
345
                Default: None.
346
            show (bool, optional): Whether to visualize.
liyinhao's avatar
liyinhao committed
347
                Default: False.
348
            out_dir (str, optional): Path to save the visualization results.
liyinhao's avatar
liyinhao committed
349
                Default: None.
350
351
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
352
353

        Returns:
wangtai's avatar
wangtai committed
354
            dict[str, float]: Results of each evaluation metric.
355
356
        """
        result_files, tmp_dir = self.format_results(results, pklfile_prefix)
zhangwenwei's avatar
zhangwenwei committed
357
        from mmdet3d.core.evaluation import kitti_eval
zhangwenwei's avatar
zhangwenwei committed
358
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376

        if isinstance(result_files, dict):
            ap_dict = dict()
            for name, result_files_ in result_files.items():
                eval_types = ['bbox', 'bev', '3d']
                if 'img' in name:
                    eval_types = ['bbox']
                ap_result_str, ap_dict_ = kitti_eval(
                    gt_annos,
                    result_files_,
                    self.CLASSES,
                    eval_types=eval_types)
                for ap_type, ap in ap_dict_.items():
                    ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap))

                print_log(
                    f'Results of {name}:\n' + ap_result_str, logger=logger)

zhangwenwei's avatar
zhangwenwei committed
377
        else:
zhangwenwei's avatar
zhangwenwei committed
378
379
380
381
382
383
384
385
            if metric == 'img_bbox':
                ap_result_str, ap_dict = kitti_eval(
                    gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
            else:
                ap_result_str, ap_dict = kitti_eval(gt_annos, result_files,
                                                    self.CLASSES)
            print_log('\n' + ap_result_str, logger=logger)

386
387
        if tmp_dir is not None:
            tmp_dir.cleanup()
388
389
        if show or out_dir:
            self.show(results, out_dir, show=show, pipeline=pipeline)
390
        return ap_dict
391
392
393
394
395
396

    def bbox2result_kitti(self,
                          net_outputs,
                          class_names,
                          pklfile_prefix=None,
                          submission_prefix=None):
397
398
399
400
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
401
            net_outputs (list[np.ndarray]): List of array storing the
402
403
                inferenced bounding boxes and scores.
            class_names (list[String]): A list of class names.
404
405
            pklfile_prefix (str): The prefix of pkl file.
            submission_prefix (str): The prefix of submission file.
406
407
408
409

        Returns:
            list[dict]: A list of dictionaries with the kitti format.
        """
Wenwei Zhang's avatar
Wenwei Zhang committed
410
411
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
412
413
        if submission_prefix is not None:
            mmcv.mkdir_or_exist(submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
414
415

        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
416
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
417
418
419
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
zhangwenwei's avatar
zhangwenwei committed
420
            info = self.data_infos[idx]
zhangwenwei's avatar
zhangwenwei committed
421
            sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
422
            image_shape = info['image']['image_shape'][:2]
zhangwenwei's avatar
zhangwenwei committed
423
            box_dict = self.convert_valid_bboxes(pred_dicts, info)
xiliu8006's avatar
xiliu8006 committed
424
425
426
427
428
429
430
431
432
433
434
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
zhangwenwei's avatar
zhangwenwei committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)
            else:
xiliu8006's avatar
xiliu8006 committed
461
                anno = {
zhangwenwei's avatar
zhangwenwei committed
462
463
464
465
466
467
468
469
470
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
xiliu8006's avatar
xiliu8006 committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
                }
                annos.append(anno)

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)

zhangwenwei's avatar
zhangwenwei committed
494
495
            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * len(annos[-1]['score']), dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
496
497
498

            det_annos += annos

499
500
501
        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
zhangwenwei's avatar
zhangwenwei committed
502
            mmcv.dump(det_annos, out)
Wenwei Zhang's avatar
Wenwei Zhang committed
503
            print(f'Result is saved to {out}.')
zhangwenwei's avatar
zhangwenwei committed
504
505
506
507
508
509

        return det_annos

    def bbox2result_kitti2d(self,
                            net_outputs,
                            class_names,
510
511
                            pklfile_prefix=None,
                            submission_prefix=None):
zhangwenwei's avatar
zhangwenwei committed
512
513
        """Convert 2D detection results to kitti format for evaluation and test
        submission.
zhangwenwei's avatar
zhangwenwei committed
514
515

        Args:
516
            net_outputs (list[np.ndarray]): List of array storing the
517
518
                inferenced bounding boxes and scores.
            class_names (list[String]): A list of class names.
519
520
            pklfile_prefix (str): The prefix of pkl file.
            submission_prefix (str): The prefix of submission file.
zhangwenwei's avatar
zhangwenwei committed
521

522
        Returns:
523
            list[dict]: A list of dictionaries have the kitti format
zhangwenwei's avatar
zhangwenwei committed
524
        """
Wenwei Zhang's avatar
Wenwei Zhang committed
525
526
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
zhangwenwei's avatar
zhangwenwei committed
527
        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
528
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
529
530
531
532
533
534
535
536
537
538
539
540
541
        for i, bboxes_per_sample in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
zhangwenwei's avatar
zhangwenwei committed
542
            sample_idx = self.data_infos[i]['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

            num_example = 0
            for label in range(len(bboxes_per_sample)):
                bbox = bboxes_per_sample[label]
                for i in range(bbox.shape[0]):
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(0.0)
                    anno['bbox'].append(bbox[i, :4])
                    # set dimensions (height, width, length) to zero
                    anno['dimensions'].append(
                        np.zeros(shape=[3], dtype=np.float32))
                    # set the 3D translation to (-1000, -1000, -1000)
                    anno['location'].append(
                        np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                    anno['rotation_y'].append(0.0)
                    anno['score'].append(bbox[i, 4])
                    num_example += 1

            if num_example == 0:
                annos.append(
                    dict(
                        name=np.array([]),
                        truncated=np.array([]),
                        occluded=np.array([]),
                        alpha=np.array([]),
                        bbox=np.zeros([0, 4]),
                        dimensions=np.zeros([0, 3]),
                        location=np.zeros([0, 3]),
                        rotation_y=np.array([]),
                        score=np.array([]),
                    ))
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * num_example, dtype=np.int64)
            det_annos += annos

584
585
586
587
588
589
590
591
        if pklfile_prefix is not None:
            # save file in pkl format
            pklfile_path = (
                pklfile_prefix[:-4] if pklfile_prefix.endswith(
                    ('.pkl', '.pickle')) else pklfile_prefix)
            mmcv.dump(det_annos, pklfile_path)

        if submission_prefix is not None:
zhangwenwei's avatar
zhangwenwei committed
592
            # save file in submission format
593
594
            mmcv.mkdir_or_exist(submission_prefix)
            print(f'Saving KITTI submission to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
595
            for i, anno in enumerate(det_annos):
zhangwenwei's avatar
zhangwenwei committed
596
                sample_idx = self.data_infos[i]['image']['image_idx']
597
                cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt'
zhangwenwei's avatar
zhangwenwei committed
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
615
            print(f'Result is saved to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
616
617
618
619

        return det_annos

    def convert_valid_bboxes(self, box_dict, info):
620
621
622
623
624
625
626
627
628
629
630
631
632
633
        """Convert the predicted boxes into valid ones.

        Args:
            box_dict (dict): Box dictionaries to be converted.

                - boxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bounding boxes.
                - scores_3d (torch.Tensor): Scores of boxes.
                - labels_3d (torch.Tensor): Class labels of boxes.
            info (dict): Data info.

        Returns:
            dict: Valid predicted boxes.

                - bbox (np.ndarray): 2D bounding boxes.
634
                - box3d_camera (np.ndarray): 3D bounding boxes in
635
                    camera coordinate.
636
                - box3d_lidar (np.ndarray): 3D bounding boxes in
637
638
639
640
641
                    LiDAR coordinate.
                - scores (np.ndarray): Scores of boxes.
                - label_preds (np.ndarray): Class label predictions.
                - sample_idx (int): Sample index.
        """
zhangwenwei's avatar
zhangwenwei committed
642
        # TODO: refactor this function
643
644
645
        box_preds = box_dict['boxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
zhangwenwei's avatar
zhangwenwei committed
646
        sample_idx = info['image']['image_idx']
647
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)
zhangwenwei's avatar
zhangwenwei committed
648

649
        if len(box_preds) == 0:
zhangwenwei's avatar
zhangwenwei committed
650
            return dict(
651
652
653
654
655
656
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
657
658
659
660
661

        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        img_shape = info['image']['image_shape']
662
663
664
665
666
        P2 = box_preds.tensor.new_tensor(P2)

        box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c)

        box_corners = box_preds_camera.corners
zhangwenwei's avatar
zhangwenwei committed
667
        box_corners_in_image = points_cam2img(box_corners, P2)
zhangwenwei's avatar
zhangwenwei committed
668
669
670
671
672
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
673
674
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
twang's avatar
twang committed
675
676
677
        valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) &
                          (box_2d_preds[:, 1] < image_shape[0]) &
                          (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
678
679
680
681
        # check box_preds
        limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
        valid_pcd_inds = ((box_preds.center > limit_range[:3]) &
                          (box_preds.center < limit_range[3:]))
zhangwenwei's avatar
zhangwenwei committed
682
683
684
685
686
        valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
687
688
689
690
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
691
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
692
693
        else:
            return dict(
694
695
696
697
698
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
699
                sample_idx=sample_idx)
liyinhao's avatar
liyinhao committed
700

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=4,
                use_dim=4,
                file_client_args=dict(backend='disk')),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        if self.modality['use_camera']:
            pipeline.insert(0, dict(type='LoadImageFromFile'))
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
721
722
723
        """Results visualization.

        Args:
wangtai's avatar
wangtai committed
724
            results (list[dict]): List of bounding boxes results.
725
            out_dir (str): Output directory of visualization result.
726
727
            show (bool): Whether to visualize the results online.
                Default: False.
728
729
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
730
        """
liyinhao's avatar
liyinhao committed
731
        assert out_dir is not None, 'Expect out_dir, got none.'
732
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
733
        for i, result in enumerate(results):
734
735
            if 'pts_bbox' in result.keys():
                result = result['pts_bbox']
liyinhao's avatar
liyinhao committed
736
737
738
            data_info = self.data_infos[i]
            pts_path = data_info['point_cloud']['velodyne_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
739
740
741
            points, img_metas, img = self._extract_data(
                i, pipeline, ['points', 'img_metas', 'img'])
            points = points.numpy()
liyinhao's avatar
liyinhao committed
742
            # for now we convert points into depth mode
743
744
            points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
                                               Coord3DMode.DEPTH)
745
746
747
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
            show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                               Box3DMode.DEPTH)
liyinhao's avatar
liyinhao committed
748
            pred_bboxes = result['boxes_3d'].tensor.numpy()
749
750
751
752
753
754
            show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                                 Box3DMode.DEPTH)
            show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
                        file_name, show)

            # multi-modality visualization
755
756
757
758
            if self.modality['use_camera'] and 'lidar2img' in img_metas.keys():
                img = img.numpy()
                # need to transpose channel to first dim
                img = img.transpose(1, 2, 0)
759
760
761
762
763
764
765
766
                show_pred_bboxes = LiDARInstance3DBoxes(
                    pred_bboxes, origin=(0.5, 0.5, 0))
                show_gt_bboxes = LiDARInstance3DBoxes(
                    gt_bboxes, origin=(0.5, 0.5, 0))
                show_multi_modality_result(
                    img,
                    show_gt_bboxes,
                    show_pred_bboxes,
767
                    img_metas['lidar2img'],
768
769
                    out_dir,
                    file_name,
770
771
                    box_mode='lidar',
                    show=show)