kitti_dataset.py 23.5 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
4
5
6
7
8
9
import copy
import os
import pickle

import mmcv
import numpy as np
import torch
import torch.utils.data as torch_data

zhangwenwei's avatar
zhangwenwei committed
10
11
from mmdet.datasets import DATASETS
from mmdet.datasets.pipelines import Compose
zhangwenwei's avatar
zhangwenwei committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
from ..core.bbox import box_np_ops
from .utils import remove_dontcare


@DATASETS.register_module
class KittiDataset(torch_data.Dataset):

    CLASSES = ('car', 'pedestrian', 'cyclist')

    def __init__(self,
                 root_path,
                 ann_file,
                 split,
                 pipeline=None,
                 training=False,
                 class_names=None,
                 modality=None,
                 with_label=True,
                 test_mode=False):
        super().__init__()
        self.root_path = root_path
        self.root_split_path = os.path.join(
            self.root_path, 'training' if split != 'test' else 'testing')
        self.class_names = class_names if class_names else self.CLASSES
        self.modality = modality
        self.with_label = with_label
        assert self.modality is not None
        self.modality = modality
        self.test_mode = test_mode
        # TODO: rm the key training if it is not needed
        self.training = training
        self.pcd_limit_range = [0, -40, -3, 70.4, 40, 0.0]

        self.ann_file = ann_file
        with open(ann_file, 'rb') as f:
            self.kitti_infos = pickle.load(f)

        # set group flag for the sampler
        if not self.test_mode:
            self._set_group_flag()

        # processing pipeline
        if pipeline is not None:
            self.pipeline = Compose(pipeline)

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_data(idx)
        while True:
            data = self.prepare_train_data(idx)
            if data is None:
                idx = self._rand_another(idx)
                continue
            return data

    def prepare_train_data(self, index):
        input_dict = self.get_sensor_data(index)
        input_dict = self.train_pre_pipeline(input_dict)
        if input_dict is None:
            return None
        example = self.pipeline(input_dict)
        if example is None or len(example['gt_bboxes_3d']._data) == 0:
            return None
        return example

    def train_pre_pipeline(self, input_dict):
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        gt_bboxes = input_dict['gt_bboxes']
        gt_names = input_dict['gt_names']
        difficulty = input_dict['difficulty']
        input_dict['bbox_fields'] = []

        selected = self.drop_arrays_by_name(gt_names, ['DontCare'])
        # selected = self.keep_arrays_by_name(gt_names, self.class_names)
        gt_bboxes_3d = gt_bboxes_3d[selected]
        gt_bboxes = gt_bboxes[selected]
        gt_names = gt_names[selected]
        difficulty = difficulty[selected]
        gt_bboxes_mask = np.array([n in self.class_names for n in gt_names],
                                  dtype=np.bool_)

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d.astype('float32')
        input_dict['gt_bboxes'] = gt_bboxes.astype('float32')
        input_dict['gt_names'] = gt_names
        input_dict['gt_names_3d'] = copy.deepcopy(gt_names)
        input_dict['difficulty'] = difficulty
        input_dict['gt_bboxes_mask'] = gt_bboxes_mask
        input_dict['gt_bboxes_3d_mask'] = copy.deepcopy(gt_bboxes_mask)
        input_dict['bbox_fields'].append('gt_bboxes')
        if len(gt_bboxes) == 0:
            return None
        return input_dict

    def prepare_test_data(self, index):
        input_dict = self.get_sensor_data(index)
        # input_dict = self.test_pre_pipeline(input_dict)
        example = self.pipeline(input_dict)
        return example

    def test_pre_pipeline(self, input_dict):
        gt_bboxes_3d = input_dict['gt_bboxes_3d']
        gt_bboxes = input_dict['gt_bboxes']
        gt_names = input_dict['gt_names']

        if gt_bboxes_3d is not None:
            selected = self.keep_arrays_by_name(gt_names, self.class_names)
            gt_bboxes_3d = gt_bboxes_3d[selected]
            gt_bboxes = gt_bboxes[selected]
            gt_names = gt_names[selected]

        input_dict['gt_bboxes_3d'] = gt_bboxes_3d
        input_dict['gt_bboxes'] = gt_bboxes
        input_dict['gt_names'] = gt_names
        input_dict['gt_names_3d'] = copy.deepcopy(gt_names)
        return input_dict

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.
        Images with aspect ratio greater than 1 will be set as group 1,
        otherwise group 0.
        In kitti's pcd, they are all the same, thus are all zeros
        """
        self.flag = np.zeros(len(self), dtype=np.uint8)

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def get_lidar(self, idx):
        lidar_file = os.path.join(self.root_split_path, 'velodyne',
                                  '%06d.bin' % idx)
        assert os.path.exists(lidar_file)
        return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)

    def get_lidar_reduced(self, idx):
        lidar_file = os.path.join(self.root_split_path, 'velodyne_reduced',
                                  '%06d.bin' % idx)
        assert os.path.exists(lidar_file)
        return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)

    def get_lidar_depth_reduced(self, idx):
        lidar_file = os.path.join(self.root_split_path,
                                  'velodyne_depth_reduced', '%06d.bin' % idx)
        assert os.path.exists(lidar_file)
        return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)

    def get_pure_depth_reduced(self, idx):
        lidar_file = os.path.join(self.root_split_path, 'depth_reduced',
                                  '%06d.bin' % idx)
        assert os.path.exists(lidar_file)
        return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)

    def get_depth(self, idx):
        depth_file = os.path.join(self.root_split_path, 'depth_completion',
                                  '%06d.png' % idx)
        assert os.path.exists(depth_file)
        depth_img = mmcv.imread(depth_file, -1) / 256.0
        return depth_img

    def __len__(self):
        return len(self.kitti_infos)

    def get_sensor_data(self, index):
        info = self.kitti_infos[index]
        sample_idx = info['image']['image_idx']
        # TODO: consider use torch.Tensor only
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c

        if self.modality['use_depth'] and self.modality['use_lidar']:
            points = self.get_lidar_depth_reduced(sample_idx)
        elif self.modality['use_lidar']:
            points = self.get_lidar_reduced(sample_idx)
        elif self.modality['use_depth']:
            points = self.get_pure_depth_reduced(sample_idx)
        else:
            assert (self.modality['use_depth'] or self.modality['use_lidar'])

        if not self.modality['use_lidar_intensity']:
            points = points[:, :3]

        input_dict = dict(
            sample_idx=sample_idx,
            points=points,
            lidar2img=lidar2img,
        )

        # TODO: support image input
        if self.modality['use_camera']:
            image_info = info['image']
            image_path = image_info['image_path']
            image_path = os.path.join(self.root_path, image_path)
            img = mmcv.imread(image_path)
            input_dict.update(
                dict(
                    img=img,
                    img_shape=img.shape,
                    ori_shape=img.shape,
                    filename=image_path))
        else:
            input_dict.update(dict(img_shape=info['image']['image_shape']))
        if self.with_label:
            annos = self.get_ann_info(index)
            input_dict.update(annos)

        return input_dict

    def get_ann_info(self, index):
        # Use index to get the annos, thus the evalhook could also use this api
        info = self.kitti_infos[index]
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        # P2 = info['calib']['P2'].astype(np.float32)

        annos = info['annos']
        # we need other objects to avoid collision when sample
        annos = remove_dontcare(annos)
        loc = annos['location']
        dims = annos['dimensions']
        rots = annos['rotation_y']
        gt_names = annos['name']
        # print(gt_names, len(loc))
        gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                      axis=1).astype(np.float32)
        difficulty = annos['difficulty']
        # this change gt_bboxes_3d to velodyne coordinates
        gt_bboxes_3d = box_np_ops.box_camera_to_lidar(gt_bboxes_3d, rect,
                                                      Trv2c)
        # only center format is allowed. so we need to convert
        # kitti [0.5, 0.5, 0] center to [0.5, 0.5, 0.5]
        # box_np_ops.change_box3d_center_(gt_bboxes, [0.5, 0.5, 0],
        #                                 [0.5, 0.5, 0.5])

        # For simplicity gt_bboxes means 2D gt bboxes
        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
            gt_bboxes=annos['bbox'],
            gt_names=gt_names,
            difficulty=difficulty)
        return anns_results

    def drop_arrays_by_name(self, gt_names, used_classes):
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def reformat_bbox(self, outputs, out=None):
        if not isinstance(outputs[0][0], dict):
            sample_idx = [
                info['image']['image_idx'] for info in self.kitti_infos
            ]
            result_files = self.bbox2result_kitti2d(outputs, self.class_names,
                                                    sample_idx, out)
        else:
            result_files = self.bbox2result_kitti(outputs, self.class_names,
                                                  out)
        return result_files

    def evaluate(self, result_files, eval_types=None):
        from mmdet3d.core.evaluation import kitti_eval
        gt_annos = [info['annos'] for info in self.kitti_infos]
        if eval_types == 'img_bbox':
            ap_result_str, ap_dict = kitti_eval(
                gt_annos, result_files, self.class_names, eval_types=['bbox'])
        else:
            ap_result_str, ap_dict = kitti_eval(gt_annos, result_files,
                                                self.class_names)
        return ap_result_str, ap_dict

    def bbox2result_kitti(self, net_outputs, class_names, out=None):
        if out:
            output_dir = out[:-4] if out.endswith(('.pkl', '.pickle')) else out
            result_dir = output_dir + '/data'
            mmcv.mkdir_or_exist(result_dir)

        det_annos = []
        print('Converting prediction to KITTI format')
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            info = self.kitti_infos[idx]
            image_shape = info['image']['image_shape'][:2]
            for i, box_dict in enumerate(pred_dicts):
                num_example = 0
                sample_idx = box_dict['sample_idx']
                box_dict = self.convert_valid_bboxes(box_dict, info)
                if box_dict['bbox'] is not None or box_dict['bbox'].size.numel(
                ) != 0:
                    box_2d_preds = box_dict['bbox']
                    box_preds = box_dict['box3d_camera']
                    scores = box_dict['scores']
                    box_preds_lidar = box_dict['box3d_lidar']
                    label_preds = box_dict['label_preds']

                    anno = {
                        'name': [],
                        'truncated': [],
                        'occluded': [],
                        'alpha': [],
                        'bbox': [],
                        'dimensions': [],
                        'location': [],
                        'rotation_y': [],
                        'score': []
                    }
                    gt_iou = scores * 0

                    for box, box_lidar, bbox, score, label, cur_gt_iou in zip(
                            box_preds, box_preds_lidar, box_2d_preds, scores,
                            label_preds, gt_iou):
                        bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                        bbox[:2] = np.maximum(bbox[:2], [0, 0])
                        anno['name'].append(class_names[int(label)])
                        anno['truncated'].append(0.0)
                        anno['occluded'].append(0)
                        anno['alpha'].append(
                            -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                        anno['bbox'].append(bbox)
                        anno['dimensions'].append(box[3:6])
                        anno['location'].append(box[:3])
                        anno['rotation_y'].append(box[6])
                        # anno["gt_iou"].append(cur_gt_iou)
                        anno['score'].append(score)

                        num_example += 1

                    if num_example != 0:
                        anno = {k: np.stack(v) for k, v in anno.items()}
                        annos.append(anno)

                    if out:
                        cur_det_file = result_dir + '/%06d.txt' % sample_idx
                        with open(cur_det_file, 'w') as f:
                            bbox = anno['bbox']
                            loc = anno['location']
                            dims = anno['dimensions']  # lhw -> hwl

                            for idx in range(len(bbox)):
                                print(
                                    '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                                    '{:.4f} {:.4f} {:.4f} '
                                    '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'
                                    .format(anno['name'][idx],
                                            anno['alpha'][idx], bbox[idx][0],
                                            bbox[idx][1], bbox[idx][2],
                                            bbox[idx][3], dims[idx][1],
                                            dims[idx][2], dims[idx][0],
                                            loc[idx][0], loc[idx][1],
                                            loc[idx][2],
                                            anno['rotation_y'][idx],
                                            anno['score'][idx]),
                                    file=f)

                if num_example == 0:
                    annos.append({
                        'name': np.array([]),
                        'truncated': np.array([]),
                        'occluded': np.array([]),
                        'alpha': np.array([]),
                        'bbox': np.zeros([0, 4]),
                        'dimensions': np.zeros([0, 3]),
                        'location': np.zeros([0, 3]),
                        'rotation_y': np.array([]),
                        'score': np.array([]),
                    })
                annos[-1]['sample_idx'] = np.array(
                    [sample_idx] * num_example, dtype=np.int64)

            det_annos += annos

        if out:
            if not out.endswith(('.pkl', '.pickle')):
                out = '{}.pkl'.format(out)
            mmcv.dump(det_annos, out)
            print('Result is saved to %s' % out)

        return det_annos

    def bbox2result_kitti2d(self,
                            net_outputs,
                            class_names,
                            sample_ids,
                            out=None):
        """Convert results to kitti format for evaluation and test submission

        Args:
            net_outputs (List[array]): list of array storing the bbox and score
            class_nanes (List[String]): A list of class names
            sample_idx (List[Int]): A list of samples' index,
                should have the same length as net_outputs.

        Return:
            List([dict]): A list of dict have the kitti format
        """
        assert len(net_outputs) == len(sample_ids)

        det_annos = []
        print('Converting prediction to KITTI format')
        for i, bboxes_per_sample in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
            sample_idx = sample_ids[i]

            num_example = 0
            for label in range(len(bboxes_per_sample)):
                bbox = bboxes_per_sample[label]
                for i in range(bbox.shape[0]):
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(0.0)
                    anno['bbox'].append(bbox[i, :4])
                    # set dimensions (height, width, length) to zero
                    anno['dimensions'].append(
                        np.zeros(shape=[3], dtype=np.float32))
                    # set the 3D translation to (-1000, -1000, -1000)
                    anno['location'].append(
                        np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                    anno['rotation_y'].append(0.0)
                    anno['score'].append(bbox[i, 4])
                    num_example += 1

            if num_example == 0:
                annos.append(
                    dict(
                        name=np.array([]),
                        truncated=np.array([]),
                        occluded=np.array([]),
                        alpha=np.array([]),
                        bbox=np.zeros([0, 4]),
                        dimensions=np.zeros([0, 3]),
                        location=np.zeros([0, 3]),
                        rotation_y=np.array([]),
                        score=np.array([]),
                    ))
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * num_example, dtype=np.int64)
            det_annos += annos

        if out:
            # save file in submission format
            output_dir = out[:-4] if out.endswith(('.pkl', '.pickle')) else out
            result_dir = output_dir + '/data'
            mmcv.mkdir_or_exist(result_dir)
            out = '{}.pkl'.format(result_dir)
            mmcv.dump(det_annos, out)
            print('Result is saved to {}'.format(out))
            for i, anno in enumerate(det_annos):
                sample_idx = sample_ids[i]
                cur_det_file = result_dir + '/%06d.txt' % sample_idx
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
            print('Result is saved to {}'.format(result_dir))

        return det_annos

    def convert_valid_bboxes(self, box_dict, info):
        # TODO: refactor this function
        final_box_preds = box_dict['box3d_lidar']
        final_scores = box_dict['scores']
        final_labels = box_dict['label_preds']
        sample_idx = info['image']['image_idx']
        final_box_preds[:, -1] = box_np_ops.limit_period(
            final_box_preds[:, -1] - np.pi, offset=0.5, period=np.pi * 2)

        if final_box_preds.shape[0] == 0:
            return dict(
                bbox=final_box_preds.new_zeros([0, 4]).numpy(),
                box3d_camera=final_box_preds.new_zeros([0, 7]).numpy(),
                box3d_lidar=final_box_preds.new_zeros([0, 7]).numpy(),
                scores=final_box_preds.new_zeros([0]).numpy(),
                label_preds=final_box_preds.new_zeros([0, 4]).numpy(),
                sample_idx=sample_idx,
            )

        from mmdet3d.core.bbox import box_torch_ops
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        img_shape = info['image']['image_shape']
        rect = final_box_preds.new_tensor(rect)
        Trv2c = final_box_preds.new_tensor(Trv2c)
        P2 = final_box_preds.new_tensor(P2)

        final_box_preds_camera = box_torch_ops.box_lidar_to_camera(
            final_box_preds, rect, Trv2c)
        locs = final_box_preds_camera[:, :3]
        dims = final_box_preds_camera[:, 3:6]
        angles = final_box_preds_camera[:, 6]
        camera_box_origin = [0.5, 1.0, 0.5]
        box_corners = box_torch_ops.center_to_corner_box3d(
            locs, dims, angles, camera_box_origin, axis=1)
        box_corners_in_image = box_torch_ops.project_to_image(box_corners, P2)
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
        # check final_box_preds_camera
        image_shape = final_box_preds.new_tensor(img_shape)
        valid_cam_inds = ((final_box_preds_camera[:, 0] < image_shape[1]) &
                          (final_box_preds_camera[:, 1] < image_shape[0]) &
                          (final_box_preds_camera[:, 2] > 0) &
                          (final_box_preds_camera[:, 3] > 0))
        # check final_box_preds
        limit_range = final_box_preds.new_tensor(self.pcd_limit_range)
        valid_pcd_inds = ((final_box_preds[:, :3] > limit_range[:3]) &
                          (final_box_preds[:, :3] < limit_range[3:]))
        valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
                box3d_camera=final_box_preds_camera[valid_inds, :].numpy(),
                box3d_lidar=final_box_preds[valid_inds, :].numpy(),
                scores=final_scores[valid_inds].numpy(),
                label_preds=final_labels[valid_inds].numpy(),
                sample_idx=sample_idx,
            )
        else:
            return dict(
                bbox=final_box_preds.new_zeros([0, 4]).numpy(),
                box3d_camera=final_box_preds.new_zeros([0, 7]).numpy(),
                box3d_lidar=final_box_preds.new_zeros([0, 7]).numpy(),
                scores=final_box_preds.new_zeros([0]).numpy(),
                label_preds=final_box_preds.new_zeros([0, 4]).numpy(),
                sample_idx=sample_idx,
            )