kitti_dataset.py 30.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import copy
zhangwenwei's avatar
zhangwenwei committed
3
4
import os
import tempfile
5
6
7
8
from os import path as osp

import mmcv
import numpy as np
zhangwenwei's avatar
zhangwenwei committed
9
import torch
zhangwenwei's avatar
zhangwenwei committed
10
from mmcv.utils import print_log
zhangwenwei's avatar
zhangwenwei committed
11

zhangwenwei's avatar
zhangwenwei committed
12
from mmdet.datasets import DATASETS
13
from ..core import show_multi_modality_result, show_result
14
from ..core.bbox import (Box3DMode, CameraInstance3DBoxes, Coord3DMode,
15
                         LiDARInstance3DBoxes, points_cam2img)
zhangwenwei's avatar
zhangwenwei committed
16
from .custom_3d import Custom3DDataset
17
from .pipelines import Compose
zhangwenwei's avatar
zhangwenwei committed
18
19


20
@DATASETS.register_module()
zhangwenwei's avatar
zhangwenwei committed
21
class KittiDataset(Custom3DDataset):
zhangwenwei's avatar
zhangwenwei committed
22
    r"""KITTI Dataset.
wangtai's avatar
wangtai committed
23

zhangwenwei's avatar
zhangwenwei committed
24
25
    This class serves as the API for experiments on the `KITTI Dataset
    <http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d>`_.
wangtai's avatar
wangtai committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

    Args:
        data_root (str): Path of dataset root.
        ann_file (str): Path of annotation file.
        split (str): Split of input data.
        pts_prefix (str, optional): Prefix of points files.
            Defaults to 'velodyne'.
        pipeline (list[dict], optional): Pipeline used for data processing.
            Defaults to None.
        classes (tuple[str], optional): Classes used in the dataset.
            Defaults to None.
        modality (dict, optional): Modality to specify the sensor data used
            as input. Defaults to None.
        box_type_3d (str, optional): Type of 3D box of this dataset.
            Based on the `box_type_3d`, the dataset will encapsulate the box
            to its original format then converted them to `box_type_3d`.
            Defaults to 'LiDAR' in this dataset. Available options includes

wangtai's avatar
wangtai committed
44
45
46
            - 'LiDAR': Box in LiDAR coordinates.
            - 'Depth': Box in depth coordinates, usually for indoor dataset.
            - 'Camera': Box in camera coordinates.
wangtai's avatar
wangtai committed
47
48
49
50
        filter_empty_gt (bool, optional): Whether to filter empty GT.
            Defaults to True.
        test_mode (bool, optional): Whether the dataset is in test mode.
            Defaults to False.
51
52
53
        pcd_limit_range (list, optional): The range of point cloud used to
            filter invalid predicted boxes.
            Default: [0, -40, -3, 70.4, 40, 0.0].
wangtai's avatar
wangtai committed
54
    """
zhangwenwei's avatar
zhangwenwei committed
55
56
57
    CLASSES = ('car', 'pedestrian', 'cyclist')

    def __init__(self,
zhangwenwei's avatar
zhangwenwei committed
58
                 data_root,
zhangwenwei's avatar
zhangwenwei committed
59
60
                 ann_file,
                 split,
zhangwenwei's avatar
zhangwenwei committed
61
                 pts_prefix='velodyne',
zhangwenwei's avatar
zhangwenwei committed
62
                 pipeline=None,
zhangwenwei's avatar
zhangwenwei committed
63
                 classes=None,
zhangwenwei's avatar
zhangwenwei committed
64
                 modality=None,
65
66
                 box_type_3d='LiDAR',
                 filter_empty_gt=True,
Wenwei Zhang's avatar
Wenwei Zhang committed
67
68
                 test_mode=False,
                 pcd_limit_range=[0, -40, -3, 70.4, 40, 0.0]):
zhangwenwei's avatar
zhangwenwei committed
69
70
71
72
73
74
        super().__init__(
            data_root=data_root,
            ann_file=ann_file,
            pipeline=pipeline,
            classes=classes,
            modality=modality,
75
76
            box_type_3d=box_type_3d,
            filter_empty_gt=filter_empty_gt,
zhangwenwei's avatar
zhangwenwei committed
77
78
            test_mode=test_mode)

Wenwei Zhang's avatar
Wenwei Zhang committed
79
        self.split = split
zhangwenwei's avatar
zhangwenwei committed
80
        self.root_split = os.path.join(self.data_root, split)
zhangwenwei's avatar
zhangwenwei committed
81
        assert self.modality is not None
Wenwei Zhang's avatar
Wenwei Zhang committed
82
        self.pcd_limit_range = pcd_limit_range
zhangwenwei's avatar
zhangwenwei committed
83
        self.pts_prefix = pts_prefix
zhangwenwei's avatar
zhangwenwei committed
84

zhangwenwei's avatar
zhangwenwei committed
85
    def _get_pts_filename(self, idx):
86
87
88
89
90
91
92
93
        """Get point cloud filename according to the given index.

        Args:
            index (int): Index of the point cloud file to get.

        Returns:
            str: Name of the point cloud file.
        """
zhangwenwei's avatar
zhangwenwei committed
94
95
96
        pts_filename = osp.join(self.root_split, self.pts_prefix,
                                f'{idx:06d}.bin')
        return pts_filename
zhangwenwei's avatar
zhangwenwei committed
97

zhangwenwei's avatar
zhangwenwei committed
98
    def get_data_info(self, index):
99
100
101
102
103
104
        """Get data info according to the given index.

        Args:
            index (int): Index of the sample data to get.

        Returns:
105
            dict: Data information that will be passed to the data
zhangwenwei's avatar
zhangwenwei committed
106
                preprocessing pipelines. It includes the following keys:
107

wangtai's avatar
wangtai committed
108
109
                - sample_idx (str): Sample index.
                - pts_filename (str): Filename of point clouds.
110
                - img_prefix (str): Prefix of image files.
wangtai's avatar
wangtai committed
111
                - img_info (dict): Image info.
112
                - lidar2img (list[np.ndarray], optional): Transformations
wangtai's avatar
wangtai committed
113
114
                    from lidar to different cameras.
                - ann_info (dict): Annotation info.
115
        """
zhangwenwei's avatar
zhangwenwei committed
116
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
117
        sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
118
        img_filename = os.path.join(self.data_root,
zhangwenwei's avatar
zhangwenwei committed
119
120
                                    info['image']['image_path'])

zhangwenwei's avatar
zhangwenwei committed
121
122
123
124
125
126
        # TODO: consider use torch.Tensor only
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        lidar2img = P2 @ rect @ Trv2c

zhangwenwei's avatar
zhangwenwei committed
127
        pts_filename = self._get_pts_filename(sample_idx)
zhangwenwei's avatar
zhangwenwei committed
128
129
        input_dict = dict(
            sample_idx=sample_idx,
zhangwenwei's avatar
zhangwenwei committed
130
            pts_filename=pts_filename,
zhangwenwei's avatar
zhangwenwei committed
131
132
            img_prefix=None,
            img_info=dict(filename=img_filename),
zhangwenwei's avatar
zhangwenwei committed
133
134
135
            lidar2img=lidar2img)

        if not self.test_mode:
zhangwenwei's avatar
zhangwenwei committed
136
            annos = self.get_ann_info(index)
zhangwenwei's avatar
zhangwenwei committed
137
            input_dict['ann_info'] = annos
zhangwenwei's avatar
zhangwenwei committed
138
139
140
141

        return input_dict

    def get_ann_info(self, index):
142
143
144
145
146
147
        """Get annotation info according to the given index.

        Args:
            index (int): Index of the annotation data to get.

        Returns:
zhangwenwei's avatar
zhangwenwei committed
148
            dict: annotation information consists of the following keys:
149

150
                - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes`):
wangtai's avatar
wangtai committed
151
152
153
154
155
                    3D ground truth bboxes.
                - gt_labels_3d (np.ndarray): Labels of ground truths.
                - gt_bboxes (np.ndarray): 2D ground truth bboxes.
                - gt_labels (np.ndarray): Labels of ground truths.
                - gt_names (list[str]): Class names of ground truths.
156
        """
zhangwenwei's avatar
zhangwenwei committed
157
        # Use index to get the annos, thus the evalhook could also use this api
zhangwenwei's avatar
zhangwenwei committed
158
        info = self.data_infos[index]
zhangwenwei's avatar
zhangwenwei committed
159
160
161
162
163
        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)

        annos = info['annos']
        # we need other objects to avoid collision when sample
164
        annos = self.remove_dontcare(annos)
zhangwenwei's avatar
zhangwenwei committed
165
166
167
168
169
170
        loc = annos['location']
        dims = annos['dimensions']
        rots = annos['rotation_y']
        gt_names = annos['name']
        gt_bboxes_3d = np.concatenate([loc, dims, rots[..., np.newaxis]],
                                      axis=1).astype(np.float32)
171
172
173

        # convert gt_bboxes_3d to velodyne coordinates
        gt_bboxes_3d = CameraInstance3DBoxes(gt_bboxes_3d).convert_to(
174
            self.box_mode_3d, np.linalg.inv(rect @ Trv2c))
zhangwenwei's avatar
zhangwenwei committed
175
176
177
178
179
180
181
182
183
184
185
186
        gt_bboxes = annos['bbox']

        selected = self.drop_arrays_by_name(gt_names, ['DontCare'])
        gt_bboxes = gt_bboxes[selected].astype('float32')
        gt_names = gt_names[selected]

        gt_labels = []
        for cat in gt_names:
            if cat in self.CLASSES:
                gt_labels.append(self.CLASSES.index(cat))
            else:
                gt_labels.append(-1)
Wenwei Zhang's avatar
Wenwei Zhang committed
187
        gt_labels = np.array(gt_labels).astype(np.int64)
zhangwenwei's avatar
zhangwenwei committed
188
        gt_labels_3d = copy.deepcopy(gt_labels)
zhangwenwei's avatar
zhangwenwei committed
189
190
191

        anns_results = dict(
            gt_bboxes_3d=gt_bboxes_3d,
zhangwenwei's avatar
zhangwenwei committed
192
            gt_labels_3d=gt_labels_3d,
zhangwenwei's avatar
zhangwenwei committed
193
            bboxes=gt_bboxes,
liyinhao's avatar
liyinhao committed
194
195
            labels=gt_labels,
            gt_names=gt_names)
zhangwenwei's avatar
zhangwenwei committed
196
197
198
        return anns_results

    def drop_arrays_by_name(self, gt_names, used_classes):
199
200
201
202
203
204
205
206
207
        """Drop irrelevant ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be dropped.
        """
zhangwenwei's avatar
zhangwenwei committed
208
209
210
211
212
        inds = [i for i, x in enumerate(gt_names) if x not in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

    def keep_arrays_by_name(self, gt_names, used_classes):
213
214
215
216
217
218
219
220
221
        """Keep useful ground truths by name.

        Args:
            gt_names (list[str]): Names of ground truths.
            used_classes (list[str]): Classes of interest.

        Returns:
            np.ndarray: Indices of ground truths that will be keeped.
        """
zhangwenwei's avatar
zhangwenwei committed
222
223
224
225
        inds = [i for i, x in enumerate(gt_names) if x in used_classes]
        inds = np.array(inds, dtype=np.int64)
        return inds

226
    def remove_dontcare(self, ann_info):
227
228
229
230
231
232
233
234
235
        """Remove annotations that do not need to be cared.

        Args:
            ann_info (dict): Dict of annotation infos. The ``'DontCare'``
                annotations will be removed according to ann_file['name'].

        Returns:
            dict: Annotations after filtering.
        """
236
237
238
239
240
241
242
243
244
        img_filtered_annotations = {}
        relevant_annotation_indices = [
            i for i, x in enumerate(ann_info['name']) if x != 'DontCare'
        ]
        for key in ann_info.keys():
            img_filtered_annotations[key] = (
                ann_info[key][relevant_annotation_indices])
        return img_filtered_annotations

245
246
247
248
    def format_results(self,
                       outputs,
                       pklfile_prefix=None,
                       submission_prefix=None):
249
250
251
252
        """Format the results to pkl file.

        Args:
            outputs (list[dict]): Testing results of the dataset.
253
            pklfile_prefix (str): The prefix of pkl files. It includes
254
255
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
256
            submission_prefix (str): The prefix of submitted files. It
257
258
259
260
261
                includes the file path and the prefix of filename, e.g.,
                "a/b/prefix". If not specified, a temp file will be created.
                Default: None.

        Returns:
262
263
            tuple: (result_files, tmp_dir), result_files is a dict containing
                the json filepaths, tmp_dir is the temporal directory created
264
265
                for saving json files when jsonfile_prefix is not specified.
        """
266
267
268
269
270
271
        if pklfile_prefix is None:
            tmp_dir = tempfile.TemporaryDirectory()
            pklfile_prefix = osp.join(tmp_dir.name, 'results')
        else:
            tmp_dir = None

zhangwenwei's avatar
zhangwenwei committed
272
        if not isinstance(outputs[0], dict):
zhangwenwei's avatar
zhangwenwei committed
273
            result_files = self.bbox2result_kitti2d(outputs, self.CLASSES,
zhangwenwei's avatar
zhangwenwei committed
274
                                                    pklfile_prefix,
275
                                                    submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        elif 'pts_bbox' in outputs[0] or 'img_bbox' in outputs[0]:
            result_files = dict()
            for name in outputs[0]:
                results_ = [out[name] for out in outputs]
                pklfile_prefix_ = pklfile_prefix + name
                if submission_prefix is not None:
                    submission_prefix_ = submission_prefix + name
                else:
                    submission_prefix_ = None
                if 'img' in name:
                    result_files = self.bbox2result_kitti2d(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                else:
                    result_files_ = self.bbox2result_kitti(
                        results_, self.CLASSES, pklfile_prefix_,
                        submission_prefix_)
                result_files[name] = result_files_
zhangwenwei's avatar
zhangwenwei committed
294
        else:
zhangwenwei's avatar
zhangwenwei committed
295
            result_files = self.bbox2result_kitti(outputs, self.CLASSES,
296
297
                                                  pklfile_prefix,
                                                  submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
298
        return result_files, tmp_dir
zhangwenwei's avatar
zhangwenwei committed
299

300
301
302
303
304
    def evaluate(self,
                 results,
                 metric=None,
                 logger=None,
                 pklfile_prefix=None,
liyinhao's avatar
liyinhao committed
305
306
                 submission_prefix=None,
                 show=False,
307
308
                 out_dir=None,
                 pipeline=None):
309
310
311
        """Evaluation in KITTI protocol.

        Args:
wangtai's avatar
wangtai committed
312
            results (list[dict]): Testing results of the dataset.
313
314
315
            metric (str | list[str], optional): Metrics to be evaluated.
                Default: None.
            logger (logging.Logger | str, optional): Logger used for printing
316
                related information during evaluation. Default: None.
317
            pklfile_prefix (str, optional): The prefix of pkl files, including
318
319
                the file path and the prefix of filename, e.g., "a/b/prefix".
                If not specified, a temp file will be created. Default: None.
320
            submission_prefix (str, optional): The prefix of submission data.
321
                If not specified, the submission data will not be generated.
322
            show (bool, optional): Whether to visualize.
liyinhao's avatar
liyinhao committed
323
                Default: False.
324
            out_dir (str, optional): Path to save the visualization results.
liyinhao's avatar
liyinhao committed
325
                Default: None.
326
327
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
328
329

        Returns:
wangtai's avatar
wangtai committed
330
            dict[str, float]: Results of each evaluation metric.
331
332
        """
        result_files, tmp_dir = self.format_results(results, pklfile_prefix)
zhangwenwei's avatar
zhangwenwei committed
333
        from mmdet3d.core.evaluation import kitti_eval
zhangwenwei's avatar
zhangwenwei committed
334
        gt_annos = [info['annos'] for info in self.data_infos]
zhangwenwei's avatar
zhangwenwei committed
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

        if isinstance(result_files, dict):
            ap_dict = dict()
            for name, result_files_ in result_files.items():
                eval_types = ['bbox', 'bev', '3d']
                if 'img' in name:
                    eval_types = ['bbox']
                ap_result_str, ap_dict_ = kitti_eval(
                    gt_annos,
                    result_files_,
                    self.CLASSES,
                    eval_types=eval_types)
                for ap_type, ap in ap_dict_.items():
                    ap_dict[f'{name}/{ap_type}'] = float('{:.4f}'.format(ap))

                print_log(
                    f'Results of {name}:\n' + ap_result_str, logger=logger)

zhangwenwei's avatar
zhangwenwei committed
353
        else:
zhangwenwei's avatar
zhangwenwei committed
354
355
356
357
358
359
360
361
            if metric == 'img_bbox':
                ap_result_str, ap_dict = kitti_eval(
                    gt_annos, result_files, self.CLASSES, eval_types=['bbox'])
            else:
                ap_result_str, ap_dict = kitti_eval(gt_annos, result_files,
                                                    self.CLASSES)
            print_log('\n' + ap_result_str, logger=logger)

362
363
        if tmp_dir is not None:
            tmp_dir.cleanup()
364
365
        if show or out_dir:
            self.show(results, out_dir, show=show, pipeline=pipeline)
366
        return ap_dict
367
368
369
370
371
372

    def bbox2result_kitti(self,
                          net_outputs,
                          class_names,
                          pklfile_prefix=None,
                          submission_prefix=None):
373
374
375
376
        """Convert 3D detection results to kitti format for evaluation and test
        submission.

        Args:
377
            net_outputs (list[np.ndarray]): List of array storing the
378
379
                inferenced bounding boxes and scores.
            class_names (list[String]): A list of class names.
380
381
            pklfile_prefix (str): The prefix of pkl file.
            submission_prefix (str): The prefix of submission file.
382
383
384
385

        Returns:
            list[dict]: A list of dictionaries with the kitti format.
        """
Wenwei Zhang's avatar
Wenwei Zhang committed
386
387
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
388
389
        if submission_prefix is not None:
            mmcv.mkdir_or_exist(submission_prefix)
zhangwenwei's avatar
zhangwenwei committed
390
391

        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
392
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
393
394
395
        for idx, pred_dicts in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
zhangwenwei's avatar
zhangwenwei committed
396
            info = self.data_infos[idx]
zhangwenwei's avatar
zhangwenwei committed
397
            sample_idx = info['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
398
            image_shape = info['image']['image_shape'][:2]
zhangwenwei's avatar
zhangwenwei committed
399
            box_dict = self.convert_valid_bboxes(pred_dicts, info)
xiliu8006's avatar
xiliu8006 committed
400
401
402
403
404
405
406
407
408
409
410
            anno = {
                'name': [],
                'truncated': [],
                'occluded': [],
                'alpha': [],
                'bbox': [],
                'dimensions': [],
                'location': [],
                'rotation_y': [],
                'score': []
            }
zhangwenwei's avatar
zhangwenwei committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
            if len(box_dict['bbox']) > 0:
                box_2d_preds = box_dict['bbox']
                box_preds = box_dict['box3d_camera']
                scores = box_dict['scores']
                box_preds_lidar = box_dict['box3d_lidar']
                label_preds = box_dict['label_preds']

                for box, box_lidar, bbox, score, label in zip(
                        box_preds, box_preds_lidar, box_2d_preds, scores,
                        label_preds):
                    bbox[2:] = np.minimum(bbox[2:], image_shape[::-1])
                    bbox[:2] = np.maximum(bbox[:2], [0, 0])
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(
                        -np.arctan2(-box_lidar[1], box_lidar[0]) + box[6])
                    anno['bbox'].append(bbox)
                    anno['dimensions'].append(box[3:6])
                    anno['location'].append(box[:3])
                    anno['rotation_y'].append(box[6])
                    anno['score'].append(score)

                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)
            else:
xiliu8006's avatar
xiliu8006 committed
437
                anno = {
zhangwenwei's avatar
zhangwenwei committed
438
439
440
441
442
443
444
445
446
                    'name': np.array([]),
                    'truncated': np.array([]),
                    'occluded': np.array([]),
                    'alpha': np.array([]),
                    'bbox': np.zeros([0, 4]),
                    'dimensions': np.zeros([0, 3]),
                    'location': np.zeros([0, 3]),
                    'rotation_y': np.array([]),
                    'score': np.array([]),
xiliu8006's avatar
xiliu8006 committed
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
                }
                annos.append(anno)

            if submission_prefix is not None:
                curr_file = f'{submission_prefix}/{sample_idx:06d}.txt'
                with open(curr_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions']  # lhw -> hwl

                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:.4f} {:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} '
                            '{:.4f} {:.4f} {:.4f} {:.4f} {:.4f} {:.4f}'.format(
                                anno['name'][idx], anno['alpha'][idx],
                                bbox[idx][0], bbox[idx][1], bbox[idx][2],
                                bbox[idx][3], dims[idx][1], dims[idx][2],
                                dims[idx][0], loc[idx][0], loc[idx][1],
                                loc[idx][2], anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f)

zhangwenwei's avatar
zhangwenwei committed
470
471
            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * len(annos[-1]['score']), dtype=np.int64)
zhangwenwei's avatar
zhangwenwei committed
472
473
474

            det_annos += annos

475
476
477
        if pklfile_prefix is not None:
            if not pklfile_prefix.endswith(('.pkl', '.pickle')):
                out = f'{pklfile_prefix}.pkl'
zhangwenwei's avatar
zhangwenwei committed
478
            mmcv.dump(det_annos, out)
Wenwei Zhang's avatar
Wenwei Zhang committed
479
            print(f'Result is saved to {out}.')
zhangwenwei's avatar
zhangwenwei committed
480
481
482
483
484
485

        return det_annos

    def bbox2result_kitti2d(self,
                            net_outputs,
                            class_names,
486
487
                            pklfile_prefix=None,
                            submission_prefix=None):
zhangwenwei's avatar
zhangwenwei committed
488
489
        """Convert 2D detection results to kitti format for evaluation and test
        submission.
zhangwenwei's avatar
zhangwenwei committed
490
491

        Args:
492
            net_outputs (list[np.ndarray]): List of array storing the
493
494
                inferenced bounding boxes and scores.
            class_names (list[String]): A list of class names.
495
496
            pklfile_prefix (str): The prefix of pkl file.
            submission_prefix (str): The prefix of submission file.
zhangwenwei's avatar
zhangwenwei committed
497

498
        Returns:
499
            list[dict]: A list of dictionaries have the kitti format
zhangwenwei's avatar
zhangwenwei committed
500
        """
Wenwei Zhang's avatar
Wenwei Zhang committed
501
502
        assert len(net_outputs) == len(self.data_infos), \
            'invalid list length of network outputs'
zhangwenwei's avatar
zhangwenwei committed
503
        det_annos = []
zhangwenwei's avatar
zhangwenwei committed
504
        print('\nConverting prediction to KITTI format')
zhangwenwei's avatar
zhangwenwei committed
505
506
507
508
509
510
511
512
513
514
515
516
517
        for i, bboxes_per_sample in enumerate(
                mmcv.track_iter_progress(net_outputs)):
            annos = []
            anno = dict(
                name=[],
                truncated=[],
                occluded=[],
                alpha=[],
                bbox=[],
                dimensions=[],
                location=[],
                rotation_y=[],
                score=[])
zhangwenwei's avatar
zhangwenwei committed
518
            sample_idx = self.data_infos[i]['image']['image_idx']
zhangwenwei's avatar
zhangwenwei committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559

            num_example = 0
            for label in range(len(bboxes_per_sample)):
                bbox = bboxes_per_sample[label]
                for i in range(bbox.shape[0]):
                    anno['name'].append(class_names[int(label)])
                    anno['truncated'].append(0.0)
                    anno['occluded'].append(0)
                    anno['alpha'].append(0.0)
                    anno['bbox'].append(bbox[i, :4])
                    # set dimensions (height, width, length) to zero
                    anno['dimensions'].append(
                        np.zeros(shape=[3], dtype=np.float32))
                    # set the 3D translation to (-1000, -1000, -1000)
                    anno['location'].append(
                        np.ones(shape=[3], dtype=np.float32) * (-1000.0))
                    anno['rotation_y'].append(0.0)
                    anno['score'].append(bbox[i, 4])
                    num_example += 1

            if num_example == 0:
                annos.append(
                    dict(
                        name=np.array([]),
                        truncated=np.array([]),
                        occluded=np.array([]),
                        alpha=np.array([]),
                        bbox=np.zeros([0, 4]),
                        dimensions=np.zeros([0, 3]),
                        location=np.zeros([0, 3]),
                        rotation_y=np.array([]),
                        score=np.array([]),
                    ))
            else:
                anno = {k: np.stack(v) for k, v in anno.items()}
                annos.append(anno)

            annos[-1]['sample_idx'] = np.array(
                [sample_idx] * num_example, dtype=np.int64)
            det_annos += annos

560
561
562
563
564
565
566
567
        if pklfile_prefix is not None:
            # save file in pkl format
            pklfile_path = (
                pklfile_prefix[:-4] if pklfile_prefix.endswith(
                    ('.pkl', '.pickle')) else pklfile_prefix)
            mmcv.dump(det_annos, pklfile_path)

        if submission_prefix is not None:
zhangwenwei's avatar
zhangwenwei committed
568
            # save file in submission format
569
570
            mmcv.mkdir_or_exist(submission_prefix)
            print(f'Saving KITTI submission to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
571
            for i, anno in enumerate(det_annos):
zhangwenwei's avatar
zhangwenwei committed
572
                sample_idx = self.data_infos[i]['image']['image_idx']
573
                cur_det_file = f'{submission_prefix}/{sample_idx:06d}.txt'
zhangwenwei's avatar
zhangwenwei committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
                with open(cur_det_file, 'w') as f:
                    bbox = anno['bbox']
                    loc = anno['location']
                    dims = anno['dimensions'][::-1]  # lhw -> hwl
                    for idx in range(len(bbox)):
                        print(
                            '{} -1 -1 {:4f} {:4f} {:4f} {:4f} {:4f} {:4f} '
                            '{:4f} {:4f} {:4f} {:4f} {:4f} {:4f} {:4f}'.format(
                                anno['name'][idx],
                                anno['alpha'][idx],
                                *bbox[idx],  # 4 float
                                *dims[idx],  # 3 float
                                *loc[idx],  # 3 float
                                anno['rotation_y'][idx],
                                anno['score'][idx]),
                            file=f,
                        )
591
            print(f'Result is saved to {submission_prefix}')
zhangwenwei's avatar
zhangwenwei committed
592
593
594
595

        return det_annos

    def convert_valid_bboxes(self, box_dict, info):
596
597
598
599
600
601
602
603
604
605
606
607
608
609
        """Convert the predicted boxes into valid ones.

        Args:
            box_dict (dict): Box dictionaries to be converted.

                - boxes_3d (:obj:`LiDARInstance3DBoxes`): 3D bounding boxes.
                - scores_3d (torch.Tensor): Scores of boxes.
                - labels_3d (torch.Tensor): Class labels of boxes.
            info (dict): Data info.

        Returns:
            dict: Valid predicted boxes.

                - bbox (np.ndarray): 2D bounding boxes.
610
                - box3d_camera (np.ndarray): 3D bounding boxes in
611
                    camera coordinate.
612
                - box3d_lidar (np.ndarray): 3D bounding boxes in
613
614
615
616
617
                    LiDAR coordinate.
                - scores (np.ndarray): Scores of boxes.
                - label_preds (np.ndarray): Class label predictions.
                - sample_idx (int): Sample index.
        """
zhangwenwei's avatar
zhangwenwei committed
618
        # TODO: refactor this function
619
620
621
        box_preds = box_dict['boxes_3d']
        scores = box_dict['scores_3d']
        labels = box_dict['labels_3d']
zhangwenwei's avatar
zhangwenwei committed
622
        sample_idx = info['image']['image_idx']
623
        box_preds.limit_yaw(offset=0.5, period=np.pi * 2)
zhangwenwei's avatar
zhangwenwei committed
624

625
        if len(box_preds) == 0:
zhangwenwei's avatar
zhangwenwei committed
626
            return dict(
627
628
629
630
631
632
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
633
634
635
636
637

        rect = info['calib']['R0_rect'].astype(np.float32)
        Trv2c = info['calib']['Tr_velo_to_cam'].astype(np.float32)
        P2 = info['calib']['P2'].astype(np.float32)
        img_shape = info['image']['image_shape']
638
639
640
641
642
        P2 = box_preds.tensor.new_tensor(P2)

        box_preds_camera = box_preds.convert_to(Box3DMode.CAM, rect @ Trv2c)

        box_corners = box_preds_camera.corners
zhangwenwei's avatar
zhangwenwei committed
643
        box_corners_in_image = points_cam2img(box_corners, P2)
zhangwenwei's avatar
zhangwenwei committed
644
645
646
647
648
        # box_corners_in_image: [N, 8, 2]
        minxy = torch.min(box_corners_in_image, dim=1)[0]
        maxxy = torch.max(box_corners_in_image, dim=1)[0]
        box_2d_preds = torch.cat([minxy, maxxy], dim=1)
        # Post-processing
649
650
        # check box_preds_camera
        image_shape = box_preds.tensor.new_tensor(img_shape)
twang's avatar
twang committed
651
652
653
        valid_cam_inds = ((box_2d_preds[:, 0] < image_shape[1]) &
                          (box_2d_preds[:, 1] < image_shape[0]) &
                          (box_2d_preds[:, 2] > 0) & (box_2d_preds[:, 3] > 0))
654
655
656
657
        # check box_preds
        limit_range = box_preds.tensor.new_tensor(self.pcd_limit_range)
        valid_pcd_inds = ((box_preds.center > limit_range[:3]) &
                          (box_preds.center < limit_range[3:]))
zhangwenwei's avatar
zhangwenwei committed
658
659
660
661
662
        valid_inds = valid_cam_inds & valid_pcd_inds.all(-1)

        if valid_inds.sum() > 0:
            return dict(
                bbox=box_2d_preds[valid_inds, :].numpy(),
663
664
665
666
                box3d_camera=box_preds_camera[valid_inds].tensor.numpy(),
                box3d_lidar=box_preds[valid_inds].tensor.numpy(),
                scores=scores[valid_inds].numpy(),
                label_preds=labels[valid_inds].numpy(),
667
                sample_idx=sample_idx)
zhangwenwei's avatar
zhangwenwei committed
668
669
        else:
            return dict(
670
671
672
673
674
                bbox=np.zeros([0, 4]),
                box3d_camera=np.zeros([0, 7]),
                box3d_lidar=np.zeros([0, 7]),
                scores=np.zeros([0]),
                label_preds=np.zeros([0, 4]),
675
                sample_idx=sample_idx)
liyinhao's avatar
liyinhao committed
676

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
    def _build_default_pipeline(self):
        """Build the default pipeline for this dataset."""
        pipeline = [
            dict(
                type='LoadPointsFromFile',
                coord_type='LIDAR',
                load_dim=4,
                use_dim=4,
                file_client_args=dict(backend='disk')),
            dict(
                type='DefaultFormatBundle3D',
                class_names=self.CLASSES,
                with_label=False),
            dict(type='Collect3D', keys=['points'])
        ]
        if self.modality['use_camera']:
            pipeline.insert(0, dict(type='LoadImageFromFile'))
        return Compose(pipeline)

    def show(self, results, out_dir, show=True, pipeline=None):
697
698
699
        """Results visualization.

        Args:
wangtai's avatar
wangtai committed
700
            results (list[dict]): List of bounding boxes results.
701
            out_dir (str): Output directory of visualization result.
702
703
            show (bool): Whether to visualize the results online.
                Default: False.
704
705
            pipeline (list[dict], optional): raw data loading for showing.
                Default: None.
706
        """
liyinhao's avatar
liyinhao committed
707
        assert out_dir is not None, 'Expect out_dir, got none.'
708
        pipeline = self._get_pipeline(pipeline)
liyinhao's avatar
liyinhao committed
709
        for i, result in enumerate(results):
710
711
            if 'pts_bbox' in result.keys():
                result = result['pts_bbox']
liyinhao's avatar
liyinhao committed
712
713
714
            data_info = self.data_infos[i]
            pts_path = data_info['point_cloud']['velodyne_path']
            file_name = osp.split(pts_path)[-1].split('.')[0]
715
716
717
            points, img_metas, img = self._extract_data(
                i, pipeline, ['points', 'img_metas', 'img'])
            points = points.numpy()
liyinhao's avatar
liyinhao committed
718
            # for now we convert points into depth mode
719
720
            points = Coord3DMode.convert_point(points, Coord3DMode.LIDAR,
                                               Coord3DMode.DEPTH)
721
722
723
            gt_bboxes = self.get_ann_info(i)['gt_bboxes_3d'].tensor.numpy()
            show_gt_bboxes = Box3DMode.convert(gt_bboxes, Box3DMode.LIDAR,
                                               Box3DMode.DEPTH)
liyinhao's avatar
liyinhao committed
724
            pred_bboxes = result['boxes_3d'].tensor.numpy()
725
726
727
728
729
730
            show_pred_bboxes = Box3DMode.convert(pred_bboxes, Box3DMode.LIDAR,
                                                 Box3DMode.DEPTH)
            show_result(points, show_gt_bboxes, show_pred_bboxes, out_dir,
                        file_name, show)

            # multi-modality visualization
731
732
733
734
            if self.modality['use_camera'] and 'lidar2img' in img_metas.keys():
                img = img.numpy()
                # need to transpose channel to first dim
                img = img.transpose(1, 2, 0)
735
736
737
738
739
740
741
742
                show_pred_bboxes = LiDARInstance3DBoxes(
                    pred_bboxes, origin=(0.5, 0.5, 0))
                show_gt_bboxes = LiDARInstance3DBoxes(
                    gt_bboxes, origin=(0.5, 0.5, 0))
                show_multi_modality_result(
                    img,
                    show_gt_bboxes,
                    show_pred_bboxes,
743
                    img_metas['lidar2img'],
744
745
                    out_dir,
                    file_name,
746
747
                    box_mode='lidar',
                    show=show)