create_data.py 13.1 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
4

5
6
7
8
9
from tools.dataset_converters import indoor_converter as indoor
from tools.dataset_converters import kitti_converter as kitti
from tools.dataset_converters import lyft_converter as lyft_converter
from tools.dataset_converters import nuscenes_converter as nuscenes_converter
from tools.dataset_converters.create_gt_database import (
Wenbo Yu's avatar
Wenbo Yu committed
10
    GTDatabaseCreater, create_groundtruth_database)
VVsssssk's avatar
VVsssssk committed
11
from tools.dataset_converters.update_infos_to_v2 import update_pkl_infos
zhangwenwei's avatar
zhangwenwei committed
12
13


14
15
16
17
18
def kitti_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    with_plane=False):
wangtai's avatar
wangtai committed
19
20
21
22
23
24
25
26
27
28
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
29
30
        with_plane (bool, optional): Whether to use plane information.
            Default: False.
wangtai's avatar
wangtai committed
31
    """
32
    kitti.create_kitti_info_file(root_path, info_prefix, with_plane)
zhangwenwei's avatar
zhangwenwei committed
33
    kitti.create_reduced_point_cloud(root_path, info_prefix)
34

VVsssssk's avatar
VVsssssk committed
35
36
37
38
39
40
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_trainval_path)
zhangwenwei's avatar
zhangwenwei committed
41
42
43
44
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
VVsssssk's avatar
VVsssssk committed
45
        f'{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
46
47
48
49
50
51
52
53
54
55
56
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
57
58
59
60
61
62
63
64
65
66
67
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
68
69
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
wangtai's avatar
wangtai committed
70
    """
zhangwenwei's avatar
zhangwenwei committed
71
72
73
74
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
VVsssssk's avatar
VVsssssk committed
75
76
        info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_test_path)
zhangwenwei's avatar
zhangwenwei committed
77
78
        return

VVsssssk's avatar
VVsssssk committed
79
80
81
82
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
83
    create_groundtruth_database(dataset_name, root_path, info_prefix,
VVsssssk's avatar
VVsssssk committed
84
                                f'{info_prefix}_infos_train.pkl')
wangtai's avatar
wangtai committed
85
86


87
def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10):
wangtai's avatar
wangtai committed
88
89
    """Prepare data related to Lyft dataset.

90
91
92
    Related data consists of '.pkl' files recording basic infos.
    Although the ground truth database and 2D annotations are not used in
    Lyft, it can also be generated like nuScenes.
wangtai's avatar
wangtai committed
93
94
95
96
97

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
98
99
        max_sweeps (int, optional): Number of input consecutive frames.
            Defaults to 10.
wangtai's avatar
wangtai committed
100
101
102
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)
VVsssssk's avatar
VVsssssk committed
103
104
105
106
107
108
109
110
    if version == 'v1.01-test':
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_test_path)
    elif version == 'v1.01-train':
        info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
        info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_train_path)
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
111

zhangwenwei's avatar
zhangwenwei committed
112

liyinhao's avatar
liyinhao committed
113
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
114
115
116
117
118
119
120
121
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
122
123
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
124
125
126
127
128
129
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_test_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
130
131


132
133
134
135
136
137
138
139
140
141
142
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
143
144
145
146
    splits = [f'Area_{i}' for i in [1, 2, 3, 4, 5, 6]]
    for split in splits:
        filename = osp.join(out_dir, f'{info_prefix}_infos_{split}.pkl')
        update_pkl_infos('s3dis', out_dir=out_dir, pkl_path=filename)
147
148


liyinhao's avatar
liyinhao committed
149
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
150
151
152
153
154
155
156
157
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
158
159
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
160
161
162
163
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
164
165


Wenwei Zhang's avatar
Wenwei Zhang committed
166
167
168
169
170
171
172
173
174
175
176
177
178
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
                    max_sweeps=5):
    """Prepare the info file for waymo dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
179
180
181
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 5. Here we store pose information of these frames
            for later use.
Wenwei Zhang's avatar
Wenwei Zhang committed
182
    """
183
    from tools.dataset_converters import waymo_converter as waymo
184

185
186
187
    splits = [
        'training', 'validation', 'testing', 'testing_3d_camera_only_detection'
    ]
Wenwei Zhang's avatar
Wenwei Zhang committed
188
189
190
191
192
193
194
195
196
197
198
    for i, split in enumerate(splits):
        load_dir = osp.join(root_path, 'waymo_format', split)
        if split == 'validation':
            save_dir = osp.join(out_dir, 'kitti_format', 'training')
        else:
            save_dir = osp.join(out_dir, 'kitti_format', split)
        converter = waymo.Waymo2KITTI(
            load_dir,
            save_dir,
            prefix=str(i),
            workers=workers,
199
200
            test_mode=(split
                       in ['testing', 'testing_3d_camera_only_detection']))
Wenwei Zhang's avatar
Wenwei Zhang committed
201
        converter.convert()
202
203
204
205

    from tools.dataset_converters.waymo_converter import \
        create_ImageSets_img_ids
    create_ImageSets_img_ids(osp.join(out_dir, 'kitti_format'), splits)
Wenwei Zhang's avatar
Wenwei Zhang committed
206
207
    # Generate waymo infos
    out_dir = osp.join(out_dir, 'kitti_format')
208
209
    kitti.create_waymo_info_file(
        out_dir, info_prefix, max_sweeps=max_sweeps, workers=workers)
VVsssssk's avatar
VVsssssk committed
210
211
212
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
213
    test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
214
215
216
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_trainval_path)
217
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=test_path)
218
    GTDatabaseCreater(
Wenwei Zhang's avatar
Wenwei Zhang committed
219
220
221
        'WaymoDataset',
        out_dir,
        info_prefix,
222
        f'{info_prefix}_infos_train.pkl',
Wenwei Zhang's avatar
Wenwei Zhang committed
223
        relative_path=False,
224
225
        with_mask=False,
        num_worker=workers).create()
Wenwei Zhang's avatar
Wenwei Zhang committed
226
227


zhangwenwei's avatar
zhangwenwei committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
247
248
249
250
parser.add_argument(
    '--with-plane',
    action='store_true',
    help='Whether to use plane information for kitti.')
zhangwenwei's avatar
zhangwenwei committed
251
252
253
254
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
255
    required=False,
zhangwenwei's avatar
zhangwenwei committed
256
257
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
258
259
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
260
261
262
args = parser.parse_args()

if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
263
264
    from mmdet3d.utils import register_all_modules
    register_all_modules()
265

zhangwenwei's avatar
zhangwenwei committed
266
267
268
269
270
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
271
272
            out_dir=args.out_dir,
            with_plane=args.with_plane)
zhangwenwei's avatar
zhangwenwei committed
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
299
300
301
302
303
304
305
306
307
308
309
310
311
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            max_sweeps=args.max_sweeps)
Wenwei Zhang's avatar
Wenwei Zhang committed
312
313
314
315
316
317
318
319
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps)
320
321
322
323
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
324
325
            out_dir=args.out_dir,
            workers=args.workers)
326
327
328
329
330
331
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
332
333
334
335
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
336
337
            out_dir=args.out_dir,
            workers=args.workers)
338
339
    else:
        raise NotImplementedError(f'Don\'t support {args.dataset} dataset.')