README.md 19.4 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
<div align="center">
zhangwenwei's avatar
zhangwenwei committed
2
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
zhangwenwei's avatar
zhangwenwei committed
20

Jingwei Zhang's avatar
Jingwei Zhang committed
21
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/latest/)
Wenwei Zhang's avatar
Wenwei Zhang committed
22
23
24
25
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE)

26
27
28
29
30
31
</div>

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
32
    <img src="https://user-images.githubusercontent.com/25839884/219255827-67c1a27f-f8c5-46a9-811d-5e57448c61d1.png" width="3%" alt="" /></a>
33
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
34
  <a href="https://discord.com/channels/1037617289144569886/1046608014234370059" style="text-decoration:none;">
35
36
37
38
39
40
41
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
42
43
44
45
46
47
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://space.bilibili.com/1293512903" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026751-d7d14cce-a7c9-4e82-9942-8375fca65b99.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.zhihu.com/people/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/219026120-ba71e48b-6e94-4bd4-b4e9-b7d175b5e362.png" width="3%" alt="" /></a>
48
49
</div>

VVsssssk's avatar
VVsssssk committed
50
**News**:
Tai-Wang's avatar
Tai-Wang committed
51

52
53
54
**We have renamed the branch `1.1`  to `main` and switched the default branch from `master` to `main`. We encourage
users to migrate to the latest version, though it comes with some cost. Please refer to [Migration Guide](docs/en/migration.md) for more details.**

Jingwei Zhang's avatar
Jingwei Zhang committed
55
56
57
58
**v1.1.0** was released in 6/4/2023

We have supported more LiDAR-based segmentation methods, including Cylinder3D, MinkUNet and SPVCNN. More new features about 3D perception are on the way. Please stay tuned!

59
**v1.1.0rc3** was released in 7/1/2023
VVsssssk's avatar
VVsssssk committed
60

VVsssssk's avatar
VVsssssk committed
61
The compatibilities of models are broken due to the unification and simplification of coordinate systems after v1.0.0rc0. For now, most models are benchmarked with similar performance, though few models are still being benchmarked. In the following release, we will update all the model checkpoints and benchmarks. See more details in the [Changelog](docs/en/notes/changelog.md) and [Changelog-v1.0.x](docs/en/notes/changelog_v1.0.x.md).
VVsssssk's avatar
VVsssssk committed
62

zhangwenwei's avatar
zhangwenwei committed
63
Documentation: https://mmdetection3d.readthedocs.io/
zhangwenwei's avatar
zhangwenwei committed
64
65
66

## Introduction

67
68
English | [简体中文](README_zh-CN.md)

69
The main branch works with **PyTorch 1.8+**.
zhangwenwei's avatar
zhangwenwei committed
70

71
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is
zhangwenwei's avatar
zhangwenwei committed
72
a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk/).
zhangwenwei's avatar
zhangwenwei committed
73

zhangwenwei's avatar
zhangwenwei committed
74
![demo image](resources/mmdet3d_outdoor_demo.gif)
zhangwenwei's avatar
zhangwenwei committed
75
76
77

### Major features

zhangwenwei's avatar
zhangwenwei committed
78
- **Support multi-modality/single-modality detectors out of box**
zhangwenwei's avatar
zhangwenwei committed
79

80
  It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.
zhangwenwei's avatar
zhangwenwei committed
81

zhangwenwei's avatar
zhangwenwei committed
82
- **Support indoor/outdoor 3D detection out of box**
zhangwenwei's avatar
zhangwenwei committed
83

Wenwei Zhang's avatar
Wenwei Zhang committed
84
  It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI.
85
  For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/main/configs/nuimages).
zhangwenwei's avatar
zhangwenwei committed
86

zhangwenwei's avatar
zhangwenwei committed
87
- **Natural integration with 2D detection**
88

VVsssssk's avatar
VVsssssk committed
89
  All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
90

zhangwenwei's avatar
zhangwenwei committed
91
- **High efficiency**
zhangwenwei's avatar
zhangwenwei committed
92

93
  It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/notes/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `✗`.
zhangwenwei's avatar
zhangwenwei committed
94

95
96
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
97
98
99
100
101
  |       VoteNet       |      358      |                          ✗                           |                           77                           |                      ✗                      |
  |  PointPillars-car   |      141      |                          ✗                           |                           ✗                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ✗                            |                      ✗                      |
  |       SECOND        |      40       |                          30                          |                           ✗                            |                      ✗                      |
  |       Part-A2       |      17       |                          14                          |                           ✗                            |                      ✗                      |
Wenwei Zhang's avatar
Wenwei Zhang committed
102
103

Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.
zhangwenwei's avatar
zhangwenwei committed
104
105
106
107
108

## License

This project is released under the [Apache 2.0 license](LICENSE).

zhangwenwei's avatar
zhangwenwei committed
109
## Changelog
zhangwenwei's avatar
zhangwenwei committed
110

Jingwei Zhang's avatar
Jingwei Zhang committed
111
**1.1.0** was released in 6/4/2023.
Tai-Wang's avatar
Tai-Wang committed
112

VVsssssk's avatar
VVsssssk committed
113
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
zhangwenwei's avatar
zhangwenwei committed
114
115
116

## Benchmark and model zoo

Wenhao Wu's avatar
Wenhao Wu committed
117
Results and models are available in the [model zoo](docs/en/model_zoo.md).
zhangwenwei's avatar
zhangwenwei committed
118

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
<div align="center">
  <b>Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Heads</b>
      </td>
      <td>
        <b>Features</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
143
        <li>MinkResNet (CVPR'2019)</li>
144
        <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
145
        <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>Architectures</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
        <b>3D Object Detection</b>
      </td>
      <td>
        <b>Monocular 3D Object Detection</b>
      </td>
      <td>
        <b>Multi-modal 3D Object Detection</b>
      </td>
      <td>
        <b>3D Semantic Segmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>Outdoor</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
191
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
192
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
193
194
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
195
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
196
197
198
199
200
201
        </ul>
        <li><b>Indoor</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
202
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
203
204
205
206
207
208
209
210
211
212
213
      </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
        </ul>
214
215
216
217
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
218
219
220
221
222
223
224
225
226
227
228
229
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
230
231
        <li><b>Outdoor</b></li>
        <ul>
232
          <li><a href="configs/minkunet">MinkUNet (CVPR'2019)</a></li>
233
          <li><a href="configs/spvcnn">SPVCNN (ECCV'2020)</a></li>
234
235
          <li><a href="configs/cylinder3d">Cylinder3D (CVPR'2021)</a></li>
        </ul>
236
237
238
239
240
241
242
243
244
245
246
247
248
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|               | ResNet | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet | Cylinder3D | MinkUNet |
| :-----------: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: | :--------: | :------: |
|    SECOND     |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| PointPillars  |   ✗    |     ✗      |   ✓    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|  FreeAnchor   |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|    VoteNet    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    H3DNet     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     3DSSD     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    Part-A2    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    MVXNet     |   ✓    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  CenterPoint  |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|      SSN      |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |     ✗      |    ✗     |
|   ImVoteNet   |   ✓    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCOS3D     |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  PointNet++   |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
| Group-Free-3D |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  ImVoxelNet   |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    PAConv     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     DGCNN     |   ✗    |     ✗      |   ✗    |   ✓   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|     SMOKE     |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|      PGD      |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|   MonoFlex    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |     ✗      |    ✗     |
|    SA-SSD     |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|    FCAF3D     |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |     ✗      |    ✗     |
|    PV-RCNN    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✗     |
|  Cylinder3D   |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✓      |    ✗     |
|   MinkUNet    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
277
|    SPVCNN     |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |     ✗      |    ✓     |
zhangwenwei's avatar
zhangwenwei committed
278

279
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
280
281
282

## Installation

Xiang Xu's avatar
Xiang Xu committed
283
Please refer to [get_started.md](docs/en/get_started.md) for installation.
zhangwenwei's avatar
zhangwenwei committed
284
285
286

## Get Started

Xiang Xu's avatar
Xiang Xu committed
287
Please see [get_started.md](docs/en/get_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/en/user_guides/train_test.md) and [with new dataset](docs/en/user_guides/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/en/user_guides/config.md), [customizing dataset](docs/en/advanced_guides/customize_dataset.md), [designing data pipeline](docs/en/user_guides/data_pipeline.md), [customizing models](docs/en/advanced_guides/customize_models.md), [customizing runtime settings](docs/en/advanced_guides/customize_runtime.md) and [Waymo dataset](docs/en/advanced_guides/datasets/waymo_det.md).
VVsssssk's avatar
VVsssssk committed
288

VVsssssk's avatar
VVsssssk committed
289
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/en/notes/compatibility.md) to be aware of the BC-breaking updates introduced in each version.
290

291
292
293
294
295
296
## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
297
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
298
299
300
301
302
303
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

zhangwenwei's avatar
zhangwenwei committed
304
305
## Contributing

Jingwei Zhang's avatar
Jingwei Zhang committed
306
We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](./docs/en/notes/contribution_guides.md) for the contributing guideline.
zhangwenwei's avatar
zhangwenwei committed
307
308
309

## Acknowledgement

zhangwenwei's avatar
zhangwenwei committed
310
MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks.
zhangwenwei's avatar
zhangwenwei committed
311
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
312
313
314

## Projects in OpenMMLab

VVsssssk's avatar
VVsssssk committed
315
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
316
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
xiangxu-0103's avatar
xiangxu-0103 committed
317
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
318
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
319
- [MMPreTrain](https://github.com/open-mmlab/mmpretrain): OpenMMLab pre-training toolbox and benchmark.
320
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
321
322
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
323
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
324
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
325
326
327
328
329
330
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
331
332
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
333
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
334
- [MMagic](https://github.com/open-mmlab/mmagic): Open**MM**Lab **A**dvanced, **G**enerative and **I**ntelligent **C**reation toolbox.
335
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
336
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.