README.md 16.7 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
<div align="center">
zhangwenwei's avatar
zhangwenwei committed
2
  <img src="resources/mmdet3d-logo.png" width="600"/>
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
  <div>&nbsp;</div>
  <div align="center">
    <b><font size="5">OpenMMLab website</font></b>
    <sup>
      <a href="https://openmmlab.com">
        <i><font size="4">HOT</font></i>
      </a>
    </sup>
    &nbsp;&nbsp;&nbsp;&nbsp;
    <b><font size="5">OpenMMLab platform</font></b>
    <sup>
      <a href="https://platform.openmmlab.com">
        <i><font size="4">TRY IT OUT</font></i>
      </a>
    </sup>
  </div>
  <div>&nbsp;</div>
zhangwenwei's avatar
zhangwenwei committed
20

21
[![docs](https://img.shields.io/badge/docs-latest-blue)](https://mmdetection3d.readthedocs.io/en/1.1/)
Wenwei Zhang's avatar
Wenwei Zhang committed
22
23
24
25
[![badge](https://github.com/open-mmlab/mmdetection3d/workflows/build/badge.svg)](https://github.com/open-mmlab/mmdetection3d/actions)
[![codecov](https://codecov.io/gh/open-mmlab/mmdetection3d/branch/master/graph/badge.svg)](https://codecov.io/gh/open-mmlab/mmdetection3d)
[![license](https://img.shields.io/github/license/open-mmlab/mmdetection3d.svg)](https://github.com/open-mmlab/mmdetection3d/blob/master/LICENSE)

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
</div>

</div>

<div align="center">
  <a href="https://openmmlab.medium.com/" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218352562-cdded397-b0f3-4ca1-b8dd-a60df8dca75b.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://discord.gg/raweFPmdzG" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218347213-c080267f-cbb6-443e-8532-8e1ed9a58ea9.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://twitter.com/OpenMMLab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346637-d30c8a0f-3eba-4699-8131-512fb06d46db.png" width="3%" alt="" /></a>
  <img src="https://user-images.githubusercontent.com/25839884/218346358-56cc8e2f-a2b8-487f-9088-32480cceabcf.png" width="3%" alt="" />
  <a href="https://www.youtube.com/openmmlab" style="text-decoration:none;">
    <img src="https://user-images.githubusercontent.com/25839884/218346691-ceb2116a-465a-40af-8424-9f30d2348ca9.png" width="3%" alt="" /></a>
</div>

VVsssssk's avatar
VVsssssk committed
44
**News**:
Tai-Wang's avatar
Tai-Wang committed
45

46
**v1.1.0rc3** was released in 7/1/2023
VVsssssk's avatar
VVsssssk committed
47

VVsssssk's avatar
VVsssssk committed
48
The compatibilities of models are broken due to the unification and simplification of coordinate systems after v1.0.0rc0. For now, most models are benchmarked with similar performance, though few models are still being benchmarked. In the following release, we will update all the model checkpoints and benchmarks. See more details in the [Changelog](docs/en/notes/changelog.md) and [Changelog-v1.0.x](docs/en/notes/changelog_v1.0.x.md).
VVsssssk's avatar
VVsssssk committed
49

zhangwenwei's avatar
zhangwenwei committed
50
Documentation: https://mmdetection3d.readthedocs.io/
zhangwenwei's avatar
zhangwenwei committed
51
52
53

## Introduction

54
55
English | [简体中文](README_zh-CN.md)

VVsssssk's avatar
VVsssssk committed
56
The master branch works with **PyTorch 1.6+**.
zhangwenwei's avatar
zhangwenwei committed
57

58
MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is
zhangwenwei's avatar
zhangwenwei committed
59
a part of the OpenMMLab project developed by [MMLab](http://mmlab.ie.cuhk.edu.hk/).
zhangwenwei's avatar
zhangwenwei committed
60

zhangwenwei's avatar
zhangwenwei committed
61
![demo image](resources/mmdet3d_outdoor_demo.gif)
zhangwenwei's avatar
zhangwenwei committed
62
63
64

### Major features

zhangwenwei's avatar
zhangwenwei committed
65
- **Support multi-modality/single-modality detectors out of box**
zhangwenwei's avatar
zhangwenwei committed
66

67
  It directly supports multi-modality/single-modality detectors including MVXNet, VoteNet, PointPillars, etc.
zhangwenwei's avatar
zhangwenwei committed
68

zhangwenwei's avatar
zhangwenwei committed
69
- **Support indoor/outdoor 3D detection out of box**
zhangwenwei's avatar
zhangwenwei committed
70

Wenwei Zhang's avatar
Wenwei Zhang committed
71
  It directly supports popular indoor and outdoor 3D detection datasets, including ScanNet, SUNRGB-D, Waymo, nuScenes, Lyft, and KITTI.
72
  For nuScenes dataset, we also support [nuImages dataset](https://github.com/open-mmlab/mmdetection3d/tree/1.1/configs/nuimages).
zhangwenwei's avatar
zhangwenwei committed
73

zhangwenwei's avatar
zhangwenwei committed
74
- **Natural integration with 2D detection**
75

VVsssssk's avatar
VVsssssk committed
76
  All the about **300+ models, methods of 40+ papers**, and modules supported in [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
77

zhangwenwei's avatar
zhangwenwei committed
78
- **High efficiency**
zhangwenwei's avatar
zhangwenwei committed
79

80
  It trains faster than other codebases. The main results are as below. Details can be found in [benchmark.md](./docs/en/notes/benchmarks.md). We compare the number of samples trained per second (the higher, the better). The models that are not supported by other codebases are marked by `✗`.
zhangwenwei's avatar
zhangwenwei committed
81

82
83
  |       Methods       | MMDetection3D | [OpenPCDet](https://github.com/open-mmlab/OpenPCDet) | [votenet](https://github.com/facebookresearch/votenet) | [Det3D](https://github.com/poodarchu/Det3D) |
  | :-----------------: | :-----------: | :--------------------------------------------------: | :----------------------------------------------------: | :-----------------------------------------: |
84
85
86
87
88
  |       VoteNet       |      358      |                          ✗                           |                           77                           |                      ✗                      |
  |  PointPillars-car   |      141      |                          ✗                           |                           ✗                            |                     140                     |
  | PointPillars-3class |      107      |                          44                          |                           ✗                            |                      ✗                      |
  |       SECOND        |      40       |                          30                          |                           ✗                            |                      ✗                      |
  |       Part-A2       |      17       |                          14                          |                           ✗                            |                      ✗                      |
Wenwei Zhang's avatar
Wenwei Zhang committed
89
90

Like [MMDetection](https://github.com/open-mmlab/mmdetection) and [MMCV](https://github.com/open-mmlab/mmcv), MMDetection3D can also be used as a library to support different projects on top of it.
zhangwenwei's avatar
zhangwenwei committed
91
92
93
94
95

## License

This project is released under the [Apache 2.0 license](LICENSE).

zhangwenwei's avatar
zhangwenwei committed
96
## Changelog
zhangwenwei's avatar
zhangwenwei committed
97

98
**1.1.0rc3** was released in 7/1/2023.
Tai-Wang's avatar
Tai-Wang committed
99

VVsssssk's avatar
VVsssssk committed
100
Please refer to [changelog.md](docs/en/notes/changelog.md) for details and release history.
zhangwenwei's avatar
zhangwenwei committed
101
102
103

## Benchmark and model zoo

Wenhao Wu's avatar
Wenhao Wu committed
104
Results and models are available in the [model zoo](docs/en/model_zoo.md).
zhangwenwei's avatar
zhangwenwei committed
105

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
<div align="center">
  <b>Components</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="bottom">
      <td>
        <b>Backbones</b>
      </td>
      <td>
        <b>Heads</b>
      </td>
      <td>
        <b>Features</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
      <ul>
        <li><a href="configs/pointnet2">PointNet (CVPR'2017)</a></li>
        <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
        <li><a href="configs/regnet">RegNet (CVPR'2020)</a></li>
        <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        <li>DLA (CVPR'2018)</li>
130
        <li>MinkResNet (CVPR'2019)</li>
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/free_anchor">FreeAnchor (NeurIPS'2019)</a></li>
      </ul>
      </td>
      <td>
      <ul>
        <li><a href="configs/dynamic_voxelization">Dynamic Voxelization (CoRL'2019)</a></li>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>

<div align="center">
  <b>Architectures</b>
</div>
<table align="center">
  <tbody>
    <tr align="center" valign="middle">
      <td>
        <b>3D Object Detection</b>
      </td>
      <td>
        <b>Monocular 3D Object Detection</b>
      </td>
      <td>
        <b>Multi-modal 3D Object Detection</b>
      </td>
      <td>
        <b>3D Semantic Segmentation</b>
      </td>
    </tr>
    <tr valign="top">
      <td>
        <li><b>Outdoor</b></li>
        <ul>
            <li><a href="configs/second">SECOND (Sensor'2018)</a></li>
            <li><a href="configs/pointpillars">PointPillars (CVPR'2019)</a></li>
            <li><a href="configs/ssn">SSN (ECCV'2020)</a></li>
            <li><a href="configs/3dssd">3DSSD (CVPR'2020)</a></li>
Tai-Wang's avatar
Tai-Wang committed
176
            <li><a href="configs/sassd">SA-SSD (CVPR'2020)</a></li>
ChaimZhu's avatar
ChaimZhu committed
177
            <li><a href="configs/point_rcnn">PointRCNN (CVPR'2019)</a></li>
178
179
            <li><a href="configs/parta2">Part-A2 (TPAMI'2020)</a></li>
            <li><a href="configs/centerpoint">CenterPoint (CVPR'2021)</a></li>
180
            <li><a href="configs/pv_rcnn">PV-RCNN (CVPR'2020)</a></li>
181
182
183
184
185
186
        </ul>
        <li><b>Indoor</b></li>
        <ul>
            <li><a href="configs/votenet">VoteNet (ICCV'2019)</a></li>
            <li><a href="configs/h3dnet">H3DNet (ECCV'2020)</a></li>
            <li><a href="configs/groupfree3d">Group-Free-3D (ICCV'2021)</a></li>
187
            <li><a href="configs/fcaf3d">FCAF3D (ECCV'2022)</a></li>
188
189
190
191
192
193
194
195
196
197
198
      </ul>
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
          <li><a href="configs/smoke">SMOKE (CVPRW'2020)</a></li>
          <li><a href="configs/fcos3d">FCOS3D (ICCVW'2021)</a></li>
          <li><a href="configs/pgd">PGD (CoRL'2021)</a></li>
          <li><a href="configs/monoflex">MonoFlex (CVPR'2021)</a></li>
        </ul>
199
200
201
202
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvoxelnet">ImVoxelNet (WACV'2022)</a></li>
        </ul>
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
      </td>
      <td>
        <li><b>Outdoor</b></li>
        <ul>
          <li><a href="configs/mvxnet">MVXNet (ICRA'2019)</a></li>
        </ul>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/imvotenet">ImVoteNet (CVPR'2020)</a></li>
        </ul>
      </td>
      <td>
        <li><b>Indoor</b></li>
        <ul>
          <li><a href="configs/pointnet2">PointNet++ (NeurIPS'2017)</a></li>
          <li><a href="configs/paconv">PAConv (CVPR'2021)</a></li>
          <li><a href="configs/dgcnn">DGCNN (TOG'2019)</a></li>
        </ul>
      </ul>
      </td>
    </tr>
</td>
    </tr>
  </tbody>
</table>
228

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
|               | ResNet | PointNet++ | SECOND | DGCNN | RegNetX | DLA | MinkResNet |
| :-----------: | :----: | :--------: | :----: | :---: | :-----: | :-: | :--------: |
|    SECOND     |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |
| PointPillars  |   ✗    |     ✗      |   ✓    |   ✗   |    ✓    |  ✗  |     ✗      |
|  FreeAnchor   |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |
|    VoteNet    |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|    H3DNet     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|     3DSSD     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|    Part-A2    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |
|    MVXNet     |   ✓    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |
|  CenterPoint  |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |
|      SSN      |   ✗    |     ✗      |   ✗    |   ✗   |    ✓    |  ✗  |     ✗      |
|   ImVoteNet   |   ✓    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|    FCOS3D     |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|  PointNet++   |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
| Group-Free-3D |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|  ImVoxelNet   |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|    PAConv     |   ✗    |     ✓      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|     DGCNN     |   ✗    |     ✗      |   ✗    |   ✓   |    ✗    |  ✗  |     ✗      |
|     SMOKE     |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |
|      PGD      |   ✓    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✗      |
|   MonoFlex    |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✓  |     ✗      |
|    SA-SSD     |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |
|    FCAF3D     |   ✗    |     ✗      |   ✗    |   ✗   |    ✗    |  ✗  |     ✓      |
|    PV-RCNN    |   ✗    |     ✗      |   ✓    |   ✗   |    ✗    |  ✗  |     ✗      |
zhangwenwei's avatar
zhangwenwei committed
254

255
**Note:** All the about **300+ models, methods of 40+ papers** in 2D detection supported by [MMDetection](https://github.com/open-mmlab/mmdetection/blob/3.x/docs/en/model_zoo.md) can be trained or used in this codebase.
zhangwenwei's avatar
zhangwenwei committed
256
257
258

## Installation

Wenhao Wu's avatar
Wenhao Wu committed
259
Please refer to [getting_started.md](docs/en/getting_started.md) for installation.
zhangwenwei's avatar
zhangwenwei committed
260
261
262

## Get Started

263
Please see [getting_started.md](docs/en/getting_started.md) for the basic usage of MMDetection3D. We provide guidance for quick run [with existing dataset](docs/en/user_guides/train_test.md) and [with new dataset](docs/en/user_guides/2_new_data_model.md) for beginners. There are also tutorials for [learning configuration systems](docs/en/user_guides/config.md), [customizing dataset](docs/en/advanced_guides/customize_dataset.md), [designing data pipeline](docs/en/user_guides/data_pipeline.md), [customizing models](docs/en/advanced_guides/customize_models.md), [customizing runtime settings](docs/en/advanced_guides/customize_runtime.md) and [Waymo dataset](docs/en/advanced_guides/datasets/waymo_det.md).
VVsssssk's avatar
VVsssssk committed
264

VVsssssk's avatar
VVsssssk committed
265
Please refer to [FAQ](docs/en/notes/faq.md) for frequently asked questions. When updating the version of MMDetection3D, please also check the [compatibility doc](docs/en/notes/compatibility.md) to be aware of the BC-breaking updates introduced in each version.
266

267
268
269
270
271
272
## Citation

If you find this project useful in your research, please consider cite:

```latex
@misc{mmdet3d2020,
Ziyi Wu's avatar
Ziyi Wu committed
273
    title={{MMDetection3D: OpenMMLab} next-generation platform for general {3D} object detection},
274
275
276
277
278
279
    author={MMDetection3D Contributors},
    howpublished = {\url{https://github.com/open-mmlab/mmdetection3d}},
    year={2020}
}
```

zhangwenwei's avatar
zhangwenwei committed
280
281
## Contributing

zhangwenwei's avatar
zhangwenwei committed
282
We appreciate all contributions to improve MMDetection3D. Please refer to [CONTRIBUTING.md](.github/CONTRIBUTING.md) for the contributing guideline.
zhangwenwei's avatar
zhangwenwei committed
283
284
285

## Acknowledgement

zhangwenwei's avatar
zhangwenwei committed
286
MMDetection3D is an open source project that is contributed by researchers and engineers from various colleges and companies. We appreciate all the contributors as well as users who give valuable feedbacks.
zhangwenwei's avatar
zhangwenwei committed
287
We wish that the toolbox and benchmark could serve the growing research community by providing a flexible toolkit to reimplement existing methods and develop their own new 3D detectors.
288
289
290

## Projects in OpenMMLab

VVsssssk's avatar
VVsssssk committed
291
- [MMEngine](https://github.com/open-mmlab/mmengine): OpenMMLab foundational library for training deep learning models.
292
- [MMCV](https://github.com/open-mmlab/mmcv): OpenMMLab foundational library for computer vision.
xiangxu-0103's avatar
xiangxu-0103 committed
293
- [MMEval](https://github.com/open-mmlab/mmeval): A unified evaluation library for multiple machine learning libraries.
294
- [MIM](https://github.com/open-mmlab/mim): MIM installs OpenMMLab packages.
295
296
- [MMClassification](https://github.com/open-mmlab/mmclassification): OpenMMLab image classification toolbox and benchmark.
- [MMDetection](https://github.com/open-mmlab/mmdetection): OpenMMLab detection toolbox and benchmark.
297
298
- [MMDetection3D](https://github.com/open-mmlab/mmdetection3d): OpenMMLab's next-generation platform for general 3D object detection.
- [MMRotate](https://github.com/open-mmlab/mmrotate): OpenMMLab rotated object detection toolbox and benchmark.
299
- [MMYOLO](https://github.com/open-mmlab/mmyolo): OpenMMLab YOLO series toolbox and benchmark.
300
- [MMSegmentation](https://github.com/open-mmlab/mmsegmentation): OpenMMLab semantic segmentation toolbox and benchmark.
301
302
303
304
305
306
- [MMOCR](https://github.com/open-mmlab/mmocr): OpenMMLab text detection, recognition, and understanding toolbox.
- [MMPose](https://github.com/open-mmlab/mmpose): OpenMMLab pose estimation toolbox and benchmark.
- [MMHuman3D](https://github.com/open-mmlab/mmhuman3d): OpenMMLab 3D human parametric model toolbox and benchmark.
- [MMSelfSup](https://github.com/open-mmlab/mmselfsup): OpenMMLab self-supervised learning toolbox and benchmark.
- [MMRazor](https://github.com/open-mmlab/mmrazor): OpenMMLab model compression toolbox and benchmark.
- [MMFewShot](https://github.com/open-mmlab/mmfewshot): OpenMMLab fewshot learning toolbox and benchmark.
307
308
- [MMAction2](https://github.com/open-mmlab/mmaction2): OpenMMLab's next-generation action understanding toolbox and benchmark.
- [MMTracking](https://github.com/open-mmlab/mmtracking): OpenMMLab video perception toolbox and benchmark.
309
- [MMFlow](https://github.com/open-mmlab/mmflow): OpenMMLab optical flow toolbox and benchmark.
310
- [MMEditing](https://github.com/open-mmlab/mmediting): OpenMMLab image and video editing toolbox.
311
- [MMGeneration](https://github.com/open-mmlab/mmgeneration): OpenMMLab image and video generative models toolbox.
312
- [MMDeploy](https://github.com/open-mmlab/mmdeploy): OpenMMLab model deployment framework.