loading.py 27.9 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
ZCMax's avatar
ZCMax committed
2
from typing import List
3

zhangwenwei's avatar
zhangwenwei committed
4
5
import mmcv
import numpy as np
6
from mmcv.transforms import LoadImageFromFile
7
from mmcv.transforms.base import BaseTransform
zhangwenwei's avatar
zhangwenwei committed
8

9
from mmdet3d.core.points import BasePoints, get_points_type
10
11
from mmdet3d.registry import TRANSFORMS
from mmdet.datasets.pipelines import LoadAnnotations
zhangwenwei's avatar
zhangwenwei committed
12
13


14
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
15
class LoadMultiViewImageFromFiles(object):
zhangwenwei's avatar
zhangwenwei committed
16
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
17

liyinhao's avatar
liyinhao committed
18
19
20
    Expects results['img_filename'] to be a list of filenames.

    Args:
21
        to_float32 (bool, optional): Whether to convert the img to float32.
liyinhao's avatar
liyinhao committed
22
            Defaults to False.
23
24
        color_type (str, optional): Color type of the file.
            Defaults to 'unchanged'.
zhangwenwei's avatar
zhangwenwei committed
25
    """
zhangwenwei's avatar
zhangwenwei committed
26

zhangwenwei's avatar
zhangwenwei committed
27
28
29
    def __init__(self, to_float32=False, color_type='unchanged'):
        self.to_float32 = to_float32
        self.color_type = color_type
zhangwenwei's avatar
zhangwenwei committed
30
31

    def __call__(self, results):
32
33
34
35
36
37
        """Call function to load multi-view image from files.

        Args:
            results (dict): Result dict containing multi-view image filenames.

        Returns:
38
            dict: The result dict containing the multi-view image data.
39
40
41
42
43
44
45
46
47
48
                Added keys and values are described below.

                - filename (str): Multi-view image filenames.
                - img (np.ndarray): Multi-view image arrays.
                - img_shape (tuple[int]): Shape of multi-view image arrays.
                - ori_shape (tuple[int]): Shape of original image arrays.
                - pad_shape (tuple[int]): Shape of padded image arrays.
                - scale_factor (float): Scale factor.
                - img_norm_cfg (dict): Normalization configuration of images.
        """
zhangwenwei's avatar
zhangwenwei committed
49
        filename = results['img_filename']
50
        # img is of shape (h, w, c, num_views)
zhangwenwei's avatar
zhangwenwei committed
51
52
53
54
55
        img = np.stack(
            [mmcv.imread(name, self.color_type) for name in filename], axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)
        results['filename'] = filename
56
        # unravel to list, see `DefaultFormatBundle` in formatting.py
57
58
        # which will transpose each image separately and then stack into array
        results['img'] = [img[..., i] for i in range(img.shape[-1])]
zhangwenwei's avatar
zhangwenwei committed
59
60
61
62
63
64
65
66
67
68
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
zhangwenwei's avatar
zhangwenwei committed
69
70
71
        return results

    def __repr__(self):
72
        """str: Return a string that describes the module."""
73
74
75
76
        repr_str = self.__class__.__name__
        repr_str += f'(to_float32={self.to_float32}, '
        repr_str += f"color_type='{self.color_type}')"
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
77
78


79
@TRANSFORMS.register_module()
80
81
82
83
84
class LoadImageFromFileMono3D(LoadImageFromFile):
    """Load an image from file in monocular 3D object detection. Compared to 2D
    detection, additional camera parameters need to be loaded.

    Args:
85
        kwargs (dict): Arguments are the same as those in
86
87
88
89
90
91
92
93
94
95
96
97
98
            :class:`LoadImageFromFile`.
    """

    def __call__(self, results):
        """Call functions to load image and get image meta information.

        Args:
            results (dict): Result dict from :obj:`mmdet.CustomDataset`.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
        super().__call__(results)
99
        results['cam2img'] = results['img_info']['cam_intrinsic']
100
101
102
        return results


103
@TRANSFORMS.register_module()
VVsssssk's avatar
VVsssssk committed
104
class LoadPointsFromMultiSweeps(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
105
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
106

zhangwenwei's avatar
zhangwenwei committed
107
108
109
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
110
111
112
113
114
115
116
        sweeps_num (int, optional): Number of sweeps. Defaults to 10.
        load_dim (int, optional): Dimension number of the loaded points.
            Defaults to 5.
        use_dim (list[int], optional): Which dimension to use.
            Defaults to [0, 1, 2, 4].
        file_client_args (dict, optional): Config dict of file clients,
            refer to
zhangwenwei's avatar
zhangwenwei committed
117
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
118
            for more details. Defaults to dict(backend='disk').
119
        pad_empty_sweeps (bool, optional): Whether to repeat keyframe when
120
            sweeps is empty. Defaults to False.
121
        remove_close (bool, optional): Whether to remove close points.
122
            Defaults to False.
123
        test_mode (bool, optional): If `test_mode=True`, it will not
124
125
            randomly sample sweeps but select the nearest N frames.
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
126
127
128
129
130
    """

    def __init__(self,
                 sweeps_num=10,
                 load_dim=5,
131
132
133
134
135
                 use_dim=[0, 1, 2, 4],
                 file_client_args=dict(backend='disk'),
                 pad_empty_sweeps=False,
                 remove_close=False,
                 test_mode=False):
zhangwenwei's avatar
zhangwenwei committed
136
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
137
        self.sweeps_num = sweeps_num
138
        self.use_dim = use_dim
zhangwenwei's avatar
zhangwenwei committed
139
140
        self.file_client_args = file_client_args.copy()
        self.file_client = None
141
142
143
        self.pad_empty_sweeps = pad_empty_sweeps
        self.remove_close = remove_close
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
144
145

    def _load_points(self, pts_filename):
146
147
148
149
150
151
152
153
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
zhangwenwei's avatar
zhangwenwei committed
154
155
156
157
158
159
160
161
162
163
164
165
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
166

167
168
169
170
    def _remove_close(self, points, radius=1.0):
        """Removes point too close within a certain radius from origin.

        Args:
171
            points (np.ndarray | :obj:`BasePoints`): Sweep points.
172
            radius (float, optional): Radius below which points are removed.
173
174
175
176
177
                Defaults to 1.0.

        Returns:
            np.ndarray: Points after removing.
        """
178
179
180
181
182
183
184
185
        if isinstance(points, np.ndarray):
            points_numpy = points
        elif isinstance(points, BasePoints):
            points_numpy = points.tensor.numpy()
        else:
            raise NotImplementedError
        x_filt = np.abs(points_numpy[:, 0]) < radius
        y_filt = np.abs(points_numpy[:, 1]) < radius
186
        not_close = np.logical_not(np.logical_and(x_filt, y_filt))
187
        return points[not_close]
188

VVsssssk's avatar
VVsssssk committed
189
    def transform(self, results):
190
191
192
        """Call function to load multi-sweep point clouds from files.

        Args:
193
            results (dict): Result dict containing multi-sweep point cloud
194
195
196
                filenames.

        Returns:
197
            dict: The result dict containing the multi-sweep points data.
198
199
                Added key and value are described below.

200
                - points (np.ndarray | :obj:`BasePoints`): Multi-sweep point
201
                    cloud arrays.
202
        """
zhangwenwei's avatar
zhangwenwei committed
203
        points = results['points']
204
        points.tensor[:, 4] = 0
zhangwenwei's avatar
zhangwenwei committed
205
206
        sweep_points_list = [points]
        ts = results['timestamp']
VVsssssk's avatar
VVsssssk committed
207
208
209
210
211
212
213
        if 'lidar_sweeps' not in results:
            if self.pad_empty_sweeps:
                for i in range(self.sweeps_num):
                    if self.remove_close:
                        sweep_points_list.append(self._remove_close(points))
                    else:
                        sweep_points_list.append(points)
214
        else:
VVsssssk's avatar
VVsssssk committed
215
216
            if len(results['lidar_sweeps']) <= self.sweeps_num:
                choices = np.arange(len(results['lidar_sweeps']))
217
218
219
220
            elif self.test_mode:
                choices = np.arange(self.sweeps_num)
            else:
                choices = np.random.choice(
VVsssssk's avatar
VVsssssk committed
221
222
223
                    len(results['lidar_sweeps']),
                    self.sweeps_num,
                    replace=False)
224
            for idx in choices:
VVsssssk's avatar
VVsssssk committed
225
226
227
                sweep = results['lidar_sweeps'][idx]
                points_sweep = self._load_points(
                    sweep['lidar_points']['lidar_path'])
228
229
230
                points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
                if self.remove_close:
                    points_sweep = self._remove_close(points_sweep)
VVsssssk's avatar
VVsssssk committed
231
232
233
234
235
                # bc-breaking: Timestamp has divided 1e6 in pkl infos.
                sweep_ts = sweep['timestamp']
                lidar2cam = np.array(sweep['lidar_points']['lidar2sensor'])
                points_sweep[:, :3] = points_sweep[:, :3] @ lidar2cam[:3, :3]
                points_sweep[:, :3] -= lidar2cam[:3, 3]
236
                points_sweep[:, 4] = ts - sweep_ts
237
                points_sweep = points.new_point(points_sweep)
238
239
                sweep_points_list.append(points_sweep)

240
241
        points = points.cat(sweep_points_list)
        points = points[:, self.use_dim]
zhangwenwei's avatar
zhangwenwei committed
242
243
244
245
        results['points'] = points
        return results

    def __repr__(self):
246
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
247
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
248
249


250
@TRANSFORMS.register_module()
251
class PointSegClassMapping(BaseTransform):
wuyuefeng's avatar
wuyuefeng committed
252
253
    """Map original semantic class to valid category ids.

254
255
256
257
258
259
260
261
262
263
    Required Keys:

    - lidar_points (dict)

        - lidar_path (str)

    Added Keys:

    - points (np.float32)

wuyuefeng's avatar
wuyuefeng committed
264
265
266
267
    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).

    Args:
268
        valid_cat_ids (tuple[int]): A tuple of valid category.
269
270
        max_cat_id (int, optional): The max possible cat_id in input
            segmentation mask. Defaults to 40.
wuyuefeng's avatar
wuyuefeng committed
271
272
    """

273
    def transform(self, results: dict) -> None:
274
275
276
277
278
279
        """Call function to map original semantic class to valid category ids.

        Args:
            results (dict): Result dict containing point semantic masks.

        Returns:
280
            dict: The result dict containing the mapped category ids.
281
282
283
284
                Updated key and value are described below.

                - pts_semantic_mask (np.ndarray): Mapped semantic masks.
        """
wuyuefeng's avatar
wuyuefeng committed
285
286
287
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']

ZCMax's avatar
ZCMax committed
288
289
290
291
        assert 'label_mapping' in results
        label_mapping = results['label_mapping']
        converted_pts_sem_mask = \
            np.array([label_mapping[mask] for mask in pts_semantic_mask])
wuyuefeng's avatar
wuyuefeng committed
292

293
        results['pts_semantic_mask'] = converted_pts_sem_mask
ZCMax's avatar
ZCMax committed
294
295
296
297
298
299
300

        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            assert 'pts_semantic_mask' in results['eval_ann_info']
            results['eval_ann_info']['pts_semantic_mask'] = \
                converted_pts_sem_mask

wuyuefeng's avatar
wuyuefeng committed
301
302
303
        return results

    def __repr__(self):
304
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
305
        repr_str = self.__class__.__name__
306
307
        repr_str += f'(valid_cat_ids={self.valid_cat_ids}, '
        repr_str += f'max_cat_id={self.max_cat_id})'
wuyuefeng's avatar
wuyuefeng committed
308
309
310
        return repr_str


311
@TRANSFORMS.register_module()
ZCMax's avatar
ZCMax committed
312
class NormalizePointsColor(BaseTransform):
zhangwenwei's avatar
zhangwenwei committed
313
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
314
315
316
317
318

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

ZCMax's avatar
ZCMax committed
319
    def __init__(self, color_mean: List[float]) -> None:
wuyuefeng's avatar
wuyuefeng committed
320
321
        self.color_mean = color_mean

ZCMax's avatar
ZCMax committed
322
    def transform(self, input_dict: dict) -> dict:
323
324
325
326
327
328
        """Call function to normalize color of points.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
329
            dict: The result dict containing the normalized points.
330
331
                Updated key and value are described below.

332
                - points (:obj:`BasePoints`): Points after color normalization.
333
        """
ZCMax's avatar
ZCMax committed
334
        points = input_dict['points']
335
        assert points.attribute_dims is not None and \
336
337
               'color' in points.attribute_dims.keys(), \
               'Expect points have color attribute'
338
339
        if self.color_mean is not None:
            points.color = points.color - \
340
                           points.color.new_tensor(self.color_mean)
341
        points.color = points.color / 255.0
ZCMax's avatar
ZCMax committed
342
343
        input_dict['points'] = points
        return input_dict
wuyuefeng's avatar
wuyuefeng committed
344
345

    def __repr__(self):
346
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
347
        repr_str = self.__class__.__name__
348
        repr_str += f'(color_mean={self.color_mean})'
wuyuefeng's avatar
wuyuefeng committed
349
350
351
        return repr_str


352
@TRANSFORMS.register_module()
jshilong's avatar
jshilong committed
353
class LoadPointsFromFile(BaseTransform):
wuyuefeng's avatar
wuyuefeng committed
354
355
    """Load Points From File.

jshilong's avatar
jshilong committed
356
357
358
359
360
361
362
363
364
    Required Keys:

    - lidar_points (dict)

        - lidar_path (str)

    Added Keys:

    - points (np.float32)
wuyuefeng's avatar
wuyuefeng committed
365
366

    Args:
367
368
369
370
371
        coord_type (str): The type of coordinates of points cloud.
            Available options includes:
            - 'LIDAR': Points in LiDAR coordinates.
            - 'DEPTH': Points in depth coordinates, usually for indoor dataset.
            - 'CAMERA': Points in camera coordinates.
372
        load_dim (int, optional): The dimension of the loaded points.
373
            Defaults to 6.
374
        use_dim (list[int], optional): Which dimensions of the points to use.
liyinhao's avatar
liyinhao committed
375
376
            Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
            or use_dim=[0, 1, 2, 3] to use the intensity dimension.
377
378
379
380
381
382
        shift_height (bool, optional): Whether to use shifted height.
            Defaults to False.
        use_color (bool, optional): Whether to use color features.
            Defaults to False.
        file_client_args (dict, optional): Config dict of file clients,
            refer to
wuyuefeng's avatar
wuyuefeng committed
383
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
384
            for more details. Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
385
386
    """

jshilong's avatar
jshilong committed
387
388
389
390
391
392
393
394
395
    def __init__(
        self,
        coord_type: str,
        load_dim: int = 6,
        use_dim: list = [0, 1, 2],
        shift_height: bool = False,
        use_color: bool = False,
        file_client_args: dict = dict(backend='disk')
    ) -> None:
wuyuefeng's avatar
wuyuefeng committed
396
        self.shift_height = shift_height
397
        self.use_color = use_color
wuyuefeng's avatar
wuyuefeng committed
398
399
400
401
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'
402
        assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH']
wuyuefeng's avatar
wuyuefeng committed
403

404
        self.coord_type = coord_type
wuyuefeng's avatar
wuyuefeng committed
405
406
407
408
409
        self.load_dim = load_dim
        self.use_dim = use_dim
        self.file_client_args = file_client_args.copy()
        self.file_client = None

jshilong's avatar
jshilong committed
410
    def _load_points(self, pts_filename: str) -> np.ndarray:
411
412
413
414
415
416
417
418
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
419
420
421
422
423
424
425
426
427
428
429
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
430

wuyuefeng's avatar
wuyuefeng committed
431
432
        return points

jshilong's avatar
jshilong committed
433
434
    def transform(self, results: dict) -> dict:
        """Method to load points data from file.
435
436
437
438
439

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
440
            dict: The result dict containing the point clouds data.
441
442
                Added key and value are described below.

443
                - points (:obj:`BasePoints`): Point clouds data.
444
        """
jshilong's avatar
jshilong committed
445
446
        pts_file_path = results['lidar_points']['lidar_path']
        points = self._load_points(pts_file_path)
wuyuefeng's avatar
wuyuefeng committed
447
448
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]
449
        attribute_dims = None
wuyuefeng's avatar
wuyuefeng committed
450
451
452
453

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
454
455
456
            points = np.concatenate(
                [points[:, :3],
                 np.expand_dims(height, 1), points[:, 3:]], 1)
457
458
            attribute_dims = dict(height=3)

459
460
461
462
463
464
465
466
467
468
469
        if self.use_color:
            assert len(self.use_dim) >= 6
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(color=[
                    points.shape[1] - 3,
                    points.shape[1] - 2,
                    points.shape[1] - 1,
                ]))

470
471
472
        points_class = get_points_type(self.coord_type)
        points = points_class(
            points, points_dim=points.shape[-1], attribute_dims=attribute_dims)
wuyuefeng's avatar
wuyuefeng committed
473
        results['points'] = points
474

wuyuefeng's avatar
wuyuefeng committed
475
476
477
        return results

    def __repr__(self):
478
        """str: Return a string that describes the module."""
liyinhao's avatar
liyinhao committed
479
        repr_str = self.__class__.__name__ + '('
480
481
482
483
484
        repr_str += f'shift_height={self.shift_height}, '
        repr_str += f'use_color={self.use_color}, '
        repr_str += f'file_client_args={self.file_client_args}, '
        repr_str += f'load_dim={self.load_dim}, '
        repr_str += f'use_dim={self.use_dim})'
wuyuefeng's avatar
wuyuefeng committed
485
486
487
        return repr_str


488
@TRANSFORMS.register_module()
489
490
491
492
493
494
495
496
class LoadPointsFromDict(LoadPointsFromFile):
    """Load Points From Dict."""

    def __call__(self, results):
        assert 'points' in results
        return results


497
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
498
499
500
501
502
503
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

jshilong's avatar
jshilong committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
    Required Keys:

    - ann_info (dict)
        - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes` |
          :obj:`DepthInstance3DBoxes` | :obj:`CameraInstance3DBoxes`):
          3D ground truth bboxes. Only when `with_bbox_3d` is True
        - gt_labels_3d (np.int64): Labels of ground truths.
          Only when `with_label_3d` is True.
        - gt_bboxes (np.float32): 2D ground truth bboxes.
          Only when `with_bbox` is True.
        - gt_labels (np.ndarray): Labels of ground truths.
          Only when `with_label` is True.
        - depths (np.ndarray): Only when
          `with_bbox_depth` is True.
        - centers_2d (np.ndarray): Only when
          `with_bbox_depth` is True.
        - attr_labels (np.ndarray): Attribute labels of instances.
          Only when `with_attr_label` is True.

    - pts_instance_mask_path (str): Path of instance mask file.
      Only when `with_mask_3d` is True.
    - pts_semantic_mask_path (str): Path of semantic mask file.
      Only when

    Added Keys:

    - gt_bboxes_3d (:obj:`LiDARInstance3DBoxes` |
      :obj:`DepthInstance3DBoxes` | :obj:`CameraInstance3DBoxes`):
      3D ground truth bboxes. Only when `with_bbox_3d` is True
    - gt_labels_3d (np.int64): Labels of ground truths.
      Only when `with_label_3d` is True.
    - gt_bboxes (np.float32): 2D ground truth bboxes.
      Only when `with_bbox` is True.
    - gt_labels (np.int64): Labels of ground truths.
      Only when `with_label` is True.
    - depths (np.float32): Only when
      `with_bbox_depth` is True.
    - centers_2d (np.ndarray): Only when
      `with_bbox_depth` is True.
    - attr_labels (np.int64): Attribute labels of instances.
      Only when `with_attr_label` is True.
    - pts_instance_mask (np.int64): Instance mask of each point.
      Only when `with_mask_3d` is True.
    - pts_semantic_mask (np.int64): Semantic mask of each point.
      Only when `with_seg_3d` is True.

wuyuefeng's avatar
wuyuefeng committed
550
551
552
553
554
    Args:
        with_bbox_3d (bool, optional): Whether to load 3D boxes.
            Defaults to True.
        with_label_3d (bool, optional): Whether to load 3D labels.
            Defaults to True.
555
556
        with_attr_label (bool, optional): Whether to load attribute label.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
557
558
559
560
561
562
563
564
565
566
567
568
        with_mask_3d (bool, optional): Whether to load 3D instance masks.
            for points. Defaults to False.
        with_seg_3d (bool, optional): Whether to load 3D semantic masks.
            for points. Defaults to False.
        with_bbox (bool, optional): Whether to load 2D boxes.
            Defaults to False.
        with_label (bool, optional): Whether to load 2D labels.
            Defaults to False.
        with_mask (bool, optional): Whether to load 2D instance masks.
            Defaults to False.
        with_seg (bool, optional): Whether to load 2D semantic masks.
            Defaults to False.
569
570
        with_bbox_depth (bool, optional): Whether to load 2.5D boxes.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
571
572
        poly2mask (bool, optional): Whether to convert polygon annotations
            to bitmasks. Defaults to True.
573
        seg_3d_dtype (dtype, optional): Dtype of 3D semantic masks.
jshilong's avatar
jshilong committed
574
            Defaults to int64.
wuyuefeng's avatar
wuyuefeng committed
575
576
577
578
579
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

jshilong's avatar
jshilong committed
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    def __init__(
        self,
        with_bbox_3d: bool = True,
        with_label_3d: bool = True,
        with_attr_label: bool = False,
        with_mask_3d: bool = False,
        with_seg_3d: bool = False,
        with_bbox: bool = False,
        with_label: bool = False,
        with_mask: bool = False,
        with_seg: bool = False,
        with_bbox_depth: bool = False,
        poly2mask: bool = True,
        seg_3d_dtype: np.dtype = np.int64,
        file_client_args: dict = dict(backend='disk')
    ) -> None:
wuyuefeng's avatar
wuyuefeng committed
596
        super().__init__(
jshilong's avatar
jshilong committed
597
598
599
600
601
            with_bbox=with_bbox,
            with_label=with_label,
            with_mask=with_mask,
            with_seg=with_seg,
            poly2mask=poly2mask,
wuyuefeng's avatar
wuyuefeng committed
602
603
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
604
        self.with_bbox_depth = with_bbox_depth
wuyuefeng's avatar
wuyuefeng committed
605
        self.with_label_3d = with_label_3d
606
        self.with_attr_label = with_attr_label
wuyuefeng's avatar
wuyuefeng committed
607
608
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d
609
        self.seg_3d_dtype = seg_3d_dtype
wuyuefeng's avatar
wuyuefeng committed
610

jshilong's avatar
jshilong committed
611
612
613
    def _load_bboxes_3d(self, results: dict) -> dict:
        """Private function to move the 3D bounding box annotation from
        `ann_info` field to the root of `results`.
614
615
616
617
618
619
620

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box annotations.
        """
jshilong's avatar
jshilong committed
621

wuyuefeng's avatar
wuyuefeng committed
622
623
624
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        return results

jshilong's avatar
jshilong committed
625
    def _load_bboxes_depth(self, results: dict) -> dict:
626
627
628
629
630
631
632
633
        """Private function to load 2.5D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 2.5D bounding box annotations.
        """
jshilong's avatar
jshilong committed
634

635
        results['depths'] = results['ann_info']['depths']
jshilong's avatar
jshilong committed
636
        results['centers_2d'] = results['ann_info']['centers_2d']
637
638
        return results

jshilong's avatar
jshilong committed
639
    def _load_labels_3d(self, results: dict) -> dict:
640
641
642
643
644
645
646
647
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
jshilong's avatar
jshilong committed
648

wuyuefeng's avatar
wuyuefeng committed
649
650
651
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

jshilong's avatar
jshilong committed
652
    def _load_attr_labels(self, results: dict) -> dict:
653
654
655
656
657
658
659
660
661
662
663
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
        results['attr_labels'] = results['ann_info']['attr_labels']
        return results

jshilong's avatar
jshilong committed
664
    def _load_masks_3d(self, results: dict) -> dict:
665
666
667
668
669
670
671
672
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
jshilong's avatar
jshilong committed
673
        pts_instance_mask_path = results['pts_instance_mask_path']
wuyuefeng's avatar
wuyuefeng committed
674
675
676
677
678

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
679
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
680
681
682
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(
WRH's avatar
WRH committed
683
                pts_instance_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
684
685

        results['pts_instance_mask'] = pts_instance_mask
jshilong's avatar
jshilong committed
686
687
688
        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            results['eval_ann_info']['pts_instance_mask'] = pts_instance_mask
wuyuefeng's avatar
wuyuefeng committed
689
690
        return results

jshilong's avatar
jshilong committed
691
    def _load_semantic_seg_3d(self, results: dict) -> dict:
692
693
694
695
696
697
698
699
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
jshilong's avatar
jshilong committed
700
        pts_semantic_mask_path = results['pts_semantic_mask_path']
wuyuefeng's avatar
wuyuefeng committed
701
702
703
704
705
706

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
707
708
            pts_semantic_mask = np.frombuffer(
                mask_bytes, dtype=self.seg_3d_dtype).copy()
wuyuefeng's avatar
wuyuefeng committed
709
710
711
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(
WRH's avatar
WRH committed
712
                pts_semantic_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
713
714

        results['pts_semantic_mask'] = pts_semantic_mask
jshilong's avatar
jshilong committed
715
716
717
        # 'eval_ann_info' will be passed to evaluator
        if 'eval_ann_info' in results:
            results['eval_ann_info']['pts_semantic_mask'] = pts_semantic_mask
wuyuefeng's avatar
wuyuefeng committed
718
719
        return results

jshilong's avatar
jshilong committed
720
721
    def transform(self, results: dict) -> dict:
        """Function to load multiple types annotations.
722
723
724
725
726
727

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box, label, mask and
jshilong's avatar
jshilong committed
728
            semantic segmentation annotations.
729
        """
jshilong's avatar
jshilong committed
730
        results = super().transform(results)
wuyuefeng's avatar
wuyuefeng committed
731
732
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
733
734
        if self.with_bbox_depth:
            results = self._load_bboxes_depth(results)
wuyuefeng's avatar
wuyuefeng committed
735
736
        if self.with_label_3d:
            results = self._load_labels_3d(results)
737
738
        if self.with_attr_label:
            results = self._load_attr_labels(results)
wuyuefeng's avatar
wuyuefeng committed
739
740
741
742
743
744
745
746
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

    def __repr__(self):
747
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
748
749
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
liyinhao's avatar
liyinhao committed
750
751
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
752
        repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, '
liyinhao's avatar
liyinhao committed
753
754
755
756
757
758
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
        repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
        repr_str += f'{indent_str}with_label={self.with_label}, '
        repr_str += f'{indent_str}with_mask={self.with_mask}, '
        repr_str += f'{indent_str}with_seg={self.with_seg}, '
759
        repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, '
wuyuefeng's avatar
wuyuefeng committed
760
761
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str