loading.py 24.1 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import mmcv
import numpy as np

4
from mmdet3d.core.points import BasePoints, get_points_type
5
from mmdet.datasets.builder import PIPELINES
6
from mmdet.datasets.pipelines import LoadAnnotations, LoadImageFromFile
zhangwenwei's avatar
zhangwenwei committed
7
8


9
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
10
class LoadMultiViewImageFromFiles(object):
zhangwenwei's avatar
zhangwenwei committed
11
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
12

liyinhao's avatar
liyinhao committed
13
14
15
16
17
18
    Expects results['img_filename'] to be a list of filenames.

    Args:
        to_float32 (bool): Whether to convert the img to float32.
            Defaults to False.
        color_type (str): Color type of the file. Defaults to 'unchanged'.
zhangwenwei's avatar
zhangwenwei committed
19
    """
zhangwenwei's avatar
zhangwenwei committed
20

zhangwenwei's avatar
zhangwenwei committed
21
22
23
    def __init__(self, to_float32=False, color_type='unchanged'):
        self.to_float32 = to_float32
        self.color_type = color_type
zhangwenwei's avatar
zhangwenwei committed
24
25

    def __call__(self, results):
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
        """Call function to load multi-view image from files.

        Args:
            results (dict): Result dict containing multi-view image filenames.

        Returns:
            dict: The result dict containing the multi-view image data. \
                Added keys and values are described below.

                - filename (str): Multi-view image filenames.
                - img (np.ndarray): Multi-view image arrays.
                - img_shape (tuple[int]): Shape of multi-view image arrays.
                - ori_shape (tuple[int]): Shape of original image arrays.
                - pad_shape (tuple[int]): Shape of padded image arrays.
                - scale_factor (float): Scale factor.
                - img_norm_cfg (dict): Normalization configuration of images.
        """
zhangwenwei's avatar
zhangwenwei committed
43
        filename = results['img_filename']
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
        img = np.stack(
            [mmcv.imread(name, self.color_type) for name in filename], axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)
        results['filename'] = filename
        results['img'] = img
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
zhangwenwei's avatar
zhangwenwei committed
60
61
62
        return results

    def __repr__(self):
63
        """str: Return a string that describes the module."""
64
65
        return f'{self.__class__.__name__} (to_float32={self.to_float32}, '\
            f"color_type='{self.color_type}')"
zhangwenwei's avatar
zhangwenwei committed
66
67


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
@PIPELINES.register_module()
class LoadImageFromFileMono3D(LoadImageFromFile):
    """Load an image from file in monocular 3D object detection. Compared to 2D
    detection, additional camera parameters need to be loaded.

    Args:
        kwargs (dict): Arguments are the same as those in \
            :class:`LoadImageFromFile`.
    """

    def __call__(self, results):
        """Call functions to load image and get image meta information.

        Args:
            results (dict): Result dict from :obj:`mmdet.CustomDataset`.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
        super().__call__(results)
        results['cam_intrinsic'] = results['img_info']['cam_intrinsic']
        return results


zhangwenwei's avatar
zhangwenwei committed
92
93
@PIPELINES.register_module()
class LoadPointsFromMultiSweeps(object):
zhangwenwei's avatar
zhangwenwei committed
94
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
95

zhangwenwei's avatar
zhangwenwei committed
96
97
98
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
99
100
101
        sweeps_num (int): Number of sweeps. Defaults to 10.
        load_dim (int): Dimension number of the loaded points. Defaults to 5.
        use_dim (list[int]): Which dimension to use. Defaults to [0, 1, 2, 4].
zhangwenwei's avatar
zhangwenwei committed
102
103
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
104
            for more details. Defaults to dict(backend='disk').
105
106
107
108
109
110
111
        pad_empty_sweeps (bool): Whether to repeat keyframe when
            sweeps is empty. Defaults to False.
        remove_close (bool): Whether to remove close points.
            Defaults to False.
        test_mode (bool): If test_model=True used for testing, it will not
            randomly sample sweeps but select the nearest N frames.
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
112
113
114
115
116
    """

    def __init__(self,
                 sweeps_num=10,
                 load_dim=5,
117
118
119
120
121
                 use_dim=[0, 1, 2, 4],
                 file_client_args=dict(backend='disk'),
                 pad_empty_sweeps=False,
                 remove_close=False,
                 test_mode=False):
zhangwenwei's avatar
zhangwenwei committed
122
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
123
        self.sweeps_num = sweeps_num
124
        self.use_dim = use_dim
zhangwenwei's avatar
zhangwenwei committed
125
126
        self.file_client_args = file_client_args.copy()
        self.file_client = None
127
128
129
        self.pad_empty_sweeps = pad_empty_sweeps
        self.remove_close = remove_close
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
130
131

    def _load_points(self, pts_filename):
132
133
134
135
136
137
138
139
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
zhangwenwei's avatar
zhangwenwei committed
140
141
142
143
144
145
146
147
148
149
150
151
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
152

153
154
155
156
    def _remove_close(self, points, radius=1.0):
        """Removes point too close within a certain radius from origin.

        Args:
157
            points (np.ndarray | :obj:`BasePoints`): Sweep points.
158
159
160
161
162
163
            radius (float): Radius below which points are removed.
                Defaults to 1.0.

        Returns:
            np.ndarray: Points after removing.
        """
164
165
166
167
168
169
170
171
        if isinstance(points, np.ndarray):
            points_numpy = points
        elif isinstance(points, BasePoints):
            points_numpy = points.tensor.numpy()
        else:
            raise NotImplementedError
        x_filt = np.abs(points_numpy[:, 0]) < radius
        y_filt = np.abs(points_numpy[:, 1]) < radius
172
        not_close = np.logical_not(np.logical_and(x_filt, y_filt))
173
        return points[not_close]
174

zhangwenwei's avatar
zhangwenwei committed
175
    def __call__(self, results):
176
177
178
179
180
181
182
183
184
185
        """Call function to load multi-sweep point clouds from files.

        Args:
            results (dict): Result dict containing multi-sweep point cloud \
                filenames.

        Returns:
            dict: The result dict containing the multi-sweep points data. \
                Added key and value are described below.

186
187
                - points (np.ndarray | :obj:`BasePoints`): Multi-sweep point \
                    cloud arrays.
188
        """
zhangwenwei's avatar
zhangwenwei committed
189
        points = results['points']
190
        points.tensor[:, 4] = 0
zhangwenwei's avatar
zhangwenwei committed
191
192
        sweep_points_list = [points]
        ts = results['timestamp']
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        if self.pad_empty_sweeps and len(results['sweeps']) == 0:
            for i in range(self.sweeps_num):
                if self.remove_close:
                    sweep_points_list.append(self._remove_close(points))
                else:
                    sweep_points_list.append(points)
        else:
            if len(results['sweeps']) <= self.sweeps_num:
                choices = np.arange(len(results['sweeps']))
            elif self.test_mode:
                choices = np.arange(self.sweeps_num)
            else:
                choices = np.random.choice(
                    len(results['sweeps']), self.sweeps_num, replace=False)
            for idx in choices:
                sweep = results['sweeps'][idx]
                points_sweep = self._load_points(sweep['data_path'])
                points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
                if self.remove_close:
                    points_sweep = self._remove_close(points_sweep)
                sweep_ts = sweep['timestamp'] / 1e6
                points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
                    'sensor2lidar_rotation'].T
                points_sweep[:, :3] += sweep['sensor2lidar_translation']
                points_sweep[:, 4] = ts - sweep_ts
218
                points_sweep = points.new_point(points_sweep)
219
220
                sweep_points_list.append(points_sweep)

221
222
        points = points.cat(sweep_points_list)
        points = points[:, self.use_dim]
zhangwenwei's avatar
zhangwenwei committed
223
224
225
226
        results['points'] = points
        return results

    def __repr__(self):
227
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
228
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
229
230
231
232
233
234
235
236
237
238


@PIPELINES.register_module()
class PointSegClassMapping(object):
    """Map original semantic class to valid category ids.

    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).

    Args:
239
        valid_cat_ids (tuple[int]): A tuple of valid category.
wuyuefeng's avatar
wuyuefeng committed
240
241
242
243
244
245
    """

    def __init__(self, valid_cat_ids):
        self.valid_cat_ids = valid_cat_ids

    def __call__(self, results):
246
247
248
249
250
251
252
253
254
255
256
        """Call function to map original semantic class to valid category ids.

        Args:
            results (dict): Result dict containing point semantic masks.

        Returns:
            dict: The result dict containing the mapped category ids. \
                Updated key and value are described below.

                - pts_semantic_mask (np.ndarray): Mapped semantic masks.
        """
wuyuefeng's avatar
wuyuefeng committed
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']
        neg_cls = len(self.valid_cat_ids)

        for i in range(pts_semantic_mask.shape[0]):
            if pts_semantic_mask[i] in self.valid_cat_ids:
                converted_id = self.valid_cat_ids.index(pts_semantic_mask[i])
                pts_semantic_mask[i] = converted_id
            else:
                pts_semantic_mask[i] = neg_cls

        results['pts_semantic_mask'] = pts_semantic_mask
        return results

    def __repr__(self):
272
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
273
        repr_str = self.__class__.__name__
274
        repr_str += f'(valid_cat_ids={self.valid_cat_ids})'
wuyuefeng's avatar
wuyuefeng committed
275
276
277
278
279
        return repr_str


@PIPELINES.register_module()
class NormalizePointsColor(object):
zhangwenwei's avatar
zhangwenwei committed
280
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
281
282
283
284
285
286
287
288
289

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

    def __init__(self, color_mean):
        self.color_mean = color_mean

    def __call__(self, results):
290
291
292
293
294
295
296
297
298
        """Call function to normalize color of points.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
            dict: The result dict containing the normalized points. \
                Updated key and value are described below.

299
                - points (:obj:`BasePoints`): Points after color normalization.
300
        """
wuyuefeng's avatar
wuyuefeng committed
301
        points = results['points']
302
303
304
305
306
307
308
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims.keys(), \
            'Expect points have color attribute'
        if self.color_mean is not None:
            points.color = points.color - \
                points.color.new_tensor(self.color_mean)
        points.color = points.color / 255.0
wuyuefeng's avatar
wuyuefeng committed
309
310
311
312
        results['points'] = points
        return results

    def __repr__(self):
313
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
314
        repr_str = self.__class__.__name__
315
        repr_str += f'(color_mean={self.color_mean})'
wuyuefeng's avatar
wuyuefeng committed
316
317
318
319
320
321
322
323
324
325
        return repr_str


@PIPELINES.register_module()
class LoadPointsFromFile(object):
    """Load Points From File.

    Load sunrgbd and scannet points from file.

    Args:
326
327
328
329
330
        coord_type (str): The type of coordinates of points cloud.
            Available options includes:
            - 'LIDAR': Points in LiDAR coordinates.
            - 'DEPTH': Points in depth coordinates, usually for indoor dataset.
            - 'CAMERA': Points in camera coordinates.
331
332
        load_dim (int): The dimension of the loaded points.
            Defaults to 6.
wuyuefeng's avatar
wuyuefeng committed
333
        use_dim (list[int]): Which dimensions of the points to be used.
liyinhao's avatar
liyinhao committed
334
335
336
            Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
            or use_dim=[0, 1, 2, 3] to use the intensity dimension.
        shift_height (bool): Whether to use shifted height. Defaults to False.
337
        use_color (bool): Whether to use color features. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
338
339
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
340
            for more details. Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
341
342
343
    """

    def __init__(self,
344
                 coord_type,
wuyuefeng's avatar
wuyuefeng committed
345
346
347
                 load_dim=6,
                 use_dim=[0, 1, 2],
                 shift_height=False,
348
                 use_color=False,
wuyuefeng's avatar
wuyuefeng committed
349
350
                 file_client_args=dict(backend='disk')):
        self.shift_height = shift_height
351
        self.use_color = use_color
wuyuefeng's avatar
wuyuefeng committed
352
353
354
355
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'
356
        assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH']
wuyuefeng's avatar
wuyuefeng committed
357

358
        self.coord_type = coord_type
wuyuefeng's avatar
wuyuefeng committed
359
360
361
362
363
364
        self.load_dim = load_dim
        self.use_dim = use_dim
        self.file_client_args = file_client_args.copy()
        self.file_client = None

    def _load_points(self, pts_filename):
365
366
367
368
369
370
371
372
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
373
374
375
376
377
378
379
380
381
382
383
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
384

wuyuefeng's avatar
wuyuefeng committed
385
386
387
        return points

    def __call__(self, results):
388
389
390
391
392
393
394
395
396
        """Call function to load points data from file.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
            dict: The result dict containing the point clouds data. \
                Added key and value are described below.

397
                - points (:obj:`BasePoints`): Point clouds data.
398
        """
wuyuefeng's avatar
wuyuefeng committed
399
400
401
402
        pts_filename = results['pts_filename']
        points = self._load_points(pts_filename)
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]
403
        attribute_dims = None
wuyuefeng's avatar
wuyuefeng committed
404
405
406
407

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
408
409
410
            points = np.concatenate(
                [points[:, :3],
                 np.expand_dims(height, 1), points[:, 3:]], 1)
411
412
            attribute_dims = dict(height=3)

413
414
415
416
417
418
419
420
421
422
423
        if self.use_color:
            assert len(self.use_dim) >= 6
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(color=[
                    points.shape[1] - 3,
                    points.shape[1] - 2,
                    points.shape[1] - 1,
                ]))

424
425
426
        points_class = get_points_type(self.coord_type)
        points = points_class(
            points, points_dim=points.shape[-1], attribute_dims=attribute_dims)
wuyuefeng's avatar
wuyuefeng committed
427
        results['points'] = points
428

wuyuefeng's avatar
wuyuefeng committed
429
430
431
        return results

    def __repr__(self):
432
        """str: Return a string that describes the module."""
liyinhao's avatar
liyinhao committed
433
        repr_str = self.__class__.__name__ + '('
434
435
436
437
438
        repr_str += f'shift_height={self.shift_height}, '
        repr_str += f'use_color={self.use_color}, '
        repr_str += f'file_client_args={self.file_client_args}, '
        repr_str += f'load_dim={self.load_dim}, '
        repr_str += f'use_dim={self.use_dim})'
wuyuefeng's avatar
wuyuefeng committed
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
        return repr_str


@PIPELINES.register_module()
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

    Args:
        with_bbox_3d (bool, optional): Whether to load 3D boxes.
            Defaults to True.
        with_label_3d (bool, optional): Whether to load 3D labels.
            Defaults to True.
454
455
        with_attr_label (bool, optional): Whether to load attribute label.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
456
457
458
459
460
461
462
463
464
465
466
467
        with_mask_3d (bool, optional): Whether to load 3D instance masks.
            for points. Defaults to False.
        with_seg_3d (bool, optional): Whether to load 3D semantic masks.
            for points. Defaults to False.
        with_bbox (bool, optional): Whether to load 2D boxes.
            Defaults to False.
        with_label (bool, optional): Whether to load 2D labels.
            Defaults to False.
        with_mask (bool, optional): Whether to load 2D instance masks.
            Defaults to False.
        with_seg (bool, optional): Whether to load 2D semantic masks.
            Defaults to False.
468
469
        with_bbox_depth (bool, optional): Whether to load 2.5D boxes.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
470
471
        poly2mask (bool, optional): Whether to convert polygon annotations
            to bitmasks. Defaults to True.
472
473
        seg_3d_dtype (dtype, optional): Dtype of 3D semantic masks.
            Defaults to int64
wuyuefeng's avatar
wuyuefeng committed
474
475
476
477
478
479
480
481
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

    def __init__(self,
                 with_bbox_3d=True,
                 with_label_3d=True,
482
                 with_attr_label=False,
wuyuefeng's avatar
wuyuefeng committed
483
484
485
486
487
488
                 with_mask_3d=False,
                 with_seg_3d=False,
                 with_bbox=False,
                 with_label=False,
                 with_mask=False,
                 with_seg=False,
489
                 with_bbox_depth=False,
wuyuefeng's avatar
wuyuefeng committed
490
                 poly2mask=True,
491
                 seg_3d_dtype='int',
wuyuefeng's avatar
wuyuefeng committed
492
493
494
495
496
497
498
499
500
                 file_client_args=dict(backend='disk')):
        super().__init__(
            with_bbox,
            with_label,
            with_mask,
            with_seg,
            poly2mask,
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
501
        self.with_bbox_depth = with_bbox_depth
wuyuefeng's avatar
wuyuefeng committed
502
        self.with_label_3d = with_label_3d
503
        self.with_attr_label = with_attr_label
wuyuefeng's avatar
wuyuefeng committed
504
505
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d
506
        self.seg_3d_dtype = seg_3d_dtype
wuyuefeng's avatar
wuyuefeng committed
507
508

    def _load_bboxes_3d(self, results):
509
510
511
512
513
514
515
516
        """Private function to load 3D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
517
518
519
520
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        results['bbox3d_fields'].append('gt_bboxes_3d')
        return results

521
522
523
524
525
526
527
528
529
530
531
532
533
    def _load_bboxes_depth(self, results):
        """Private function to load 2.5D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 2.5D bounding box annotations.
        """
        results['centers2d'] = results['ann_info']['centers2d']
        results['depths'] = results['ann_info']['depths']
        return results

wuyuefeng's avatar
wuyuefeng committed
534
    def _load_labels_3d(self, results):
535
536
537
538
539
540
541
542
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
543
544
545
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

546
547
548
549
550
551
552
553
554
555
556
557
    def _load_attr_labels(self, results):
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
        results['attr_labels'] = results['ann_info']['attr_labels']
        return results

wuyuefeng's avatar
wuyuefeng committed
558
    def _load_masks_3d(self, results):
559
560
561
562
563
564
565
566
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
        pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int)
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(
                pts_instance_mask_path, dtype=np.long)

        results['pts_instance_mask'] = pts_instance_mask
        results['pts_mask_fields'].append('pts_instance_mask')
        return results

    def _load_semantic_seg_3d(self, results):
584
585
586
587
588
589
590
591
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
592
593
594
595
596
597
598
        pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
599
600
            pts_semantic_mask = np.frombuffer(
                mask_bytes, dtype=self.seg_3d_dtype).copy()
wuyuefeng's avatar
wuyuefeng committed
601
602
603
604
605
606
607
608
609
610
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(
                pts_semantic_mask_path, dtype=np.long)

        results['pts_semantic_mask'] = pts_semantic_mask
        results['pts_seg_fields'].append('pts_semantic_mask')
        return results

    def __call__(self, results):
611
612
613
614
615
616
617
618
619
        """Call function to load multiple types annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box, label, mask and
                semantic segmentation annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
620
621
622
623
624
        results = super().__call__(results)
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
            if results is None:
                return None
625
626
627
628
        if self.with_bbox_depth:
            results = self._load_bboxes_depth(results)
            if results is None:
                return None
wuyuefeng's avatar
wuyuefeng committed
629
630
        if self.with_label_3d:
            results = self._load_labels_3d(results)
631
632
        if self.with_attr_label:
            results = self._load_attr_labels(results)
wuyuefeng's avatar
wuyuefeng committed
633
634
635
636
637
638
639
640
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

    def __repr__(self):
641
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
642
643
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
liyinhao's avatar
liyinhao committed
644
645
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
646
        repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, '
liyinhao's avatar
liyinhao committed
647
648
649
650
651
652
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
        repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
        repr_str += f'{indent_str}with_label={self.with_label}, '
        repr_str += f'{indent_str}with_mask={self.with_mask}, '
        repr_str += f'{indent_str}with_seg={self.with_seg}, '
653
        repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, '
wuyuefeng's avatar
wuyuefeng committed
654
655
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str