loading.py 25.2 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
3
import mmcv
import numpy as np
4
from mmcv.transforms import LoadImageFromFile
zhangwenwei's avatar
zhangwenwei committed
5

6
from mmdet3d.core.points import BasePoints, get_points_type
7
8
from mmdet3d.registry import TRANSFORMS
from mmdet.datasets.pipelines import LoadAnnotations
zhangwenwei's avatar
zhangwenwei committed
9
10


11
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
12
class LoadMultiViewImageFromFiles(object):
zhangwenwei's avatar
zhangwenwei committed
13
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
14

liyinhao's avatar
liyinhao committed
15
16
17
    Expects results['img_filename'] to be a list of filenames.

    Args:
18
        to_float32 (bool, optional): Whether to convert the img to float32.
liyinhao's avatar
liyinhao committed
19
            Defaults to False.
20
21
        color_type (str, optional): Color type of the file.
            Defaults to 'unchanged'.
zhangwenwei's avatar
zhangwenwei committed
22
    """
zhangwenwei's avatar
zhangwenwei committed
23

zhangwenwei's avatar
zhangwenwei committed
24
25
26
    def __init__(self, to_float32=False, color_type='unchanged'):
        self.to_float32 = to_float32
        self.color_type = color_type
zhangwenwei's avatar
zhangwenwei committed
27
28

    def __call__(self, results):
29
30
31
32
33
34
        """Call function to load multi-view image from files.

        Args:
            results (dict): Result dict containing multi-view image filenames.

        Returns:
35
            dict: The result dict containing the multi-view image data.
36
37
38
39
40
41
42
43
44
45
                Added keys and values are described below.

                - filename (str): Multi-view image filenames.
                - img (np.ndarray): Multi-view image arrays.
                - img_shape (tuple[int]): Shape of multi-view image arrays.
                - ori_shape (tuple[int]): Shape of original image arrays.
                - pad_shape (tuple[int]): Shape of padded image arrays.
                - scale_factor (float): Scale factor.
                - img_norm_cfg (dict): Normalization configuration of images.
        """
zhangwenwei's avatar
zhangwenwei committed
46
        filename = results['img_filename']
47
        # img is of shape (h, w, c, num_views)
zhangwenwei's avatar
zhangwenwei committed
48
49
50
51
52
        img = np.stack(
            [mmcv.imread(name, self.color_type) for name in filename], axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)
        results['filename'] = filename
53
        # unravel to list, see `DefaultFormatBundle` in formatting.py
54
55
        # which will transpose each image separately and then stack into array
        results['img'] = [img[..., i] for i in range(img.shape[-1])]
zhangwenwei's avatar
zhangwenwei committed
56
57
58
59
60
61
62
63
64
65
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
zhangwenwei's avatar
zhangwenwei committed
66
67
68
        return results

    def __repr__(self):
69
        """str: Return a string that describes the module."""
70
71
72
73
        repr_str = self.__class__.__name__
        repr_str += f'(to_float32={self.to_float32}, '
        repr_str += f"color_type='{self.color_type}')"
        return repr_str
zhangwenwei's avatar
zhangwenwei committed
74
75


76
@TRANSFORMS.register_module()
77
78
79
80
81
class LoadImageFromFileMono3D(LoadImageFromFile):
    """Load an image from file in monocular 3D object detection. Compared to 2D
    detection, additional camera parameters need to be loaded.

    Args:
82
        kwargs (dict): Arguments are the same as those in
83
84
85
86
87
88
89
90
91
92
93
94
95
            :class:`LoadImageFromFile`.
    """

    def __call__(self, results):
        """Call functions to load image and get image meta information.

        Args:
            results (dict): Result dict from :obj:`mmdet.CustomDataset`.

        Returns:
            dict: The dict contains loaded image and meta information.
        """
        super().__call__(results)
96
        results['cam2img'] = results['img_info']['cam_intrinsic']
97
98
99
        return results


100
@TRANSFORMS.register_module()
zhangwenwei's avatar
zhangwenwei committed
101
class LoadPointsFromMultiSweeps(object):
zhangwenwei's avatar
zhangwenwei committed
102
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
103

zhangwenwei's avatar
zhangwenwei committed
104
105
106
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
107
108
109
110
111
112
113
        sweeps_num (int, optional): Number of sweeps. Defaults to 10.
        load_dim (int, optional): Dimension number of the loaded points.
            Defaults to 5.
        use_dim (list[int], optional): Which dimension to use.
            Defaults to [0, 1, 2, 4].
        file_client_args (dict, optional): Config dict of file clients,
            refer to
zhangwenwei's avatar
zhangwenwei committed
114
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
115
            for more details. Defaults to dict(backend='disk').
116
        pad_empty_sweeps (bool, optional): Whether to repeat keyframe when
117
            sweeps is empty. Defaults to False.
118
        remove_close (bool, optional): Whether to remove close points.
119
            Defaults to False.
120
        test_mode (bool, optional): If `test_mode=True`, it will not
121
122
            randomly sample sweeps but select the nearest N frames.
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
123
124
125
126
127
    """

    def __init__(self,
                 sweeps_num=10,
                 load_dim=5,
128
129
130
131
132
                 use_dim=[0, 1, 2, 4],
                 file_client_args=dict(backend='disk'),
                 pad_empty_sweeps=False,
                 remove_close=False,
                 test_mode=False):
zhangwenwei's avatar
zhangwenwei committed
133
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
134
        self.sweeps_num = sweeps_num
135
        self.use_dim = use_dim
zhangwenwei's avatar
zhangwenwei committed
136
137
        self.file_client_args = file_client_args.copy()
        self.file_client = None
138
139
140
        self.pad_empty_sweeps = pad_empty_sweeps
        self.remove_close = remove_close
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
141
142

    def _load_points(self, pts_filename):
143
144
145
146
147
148
149
150
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
zhangwenwei's avatar
zhangwenwei committed
151
152
153
154
155
156
157
158
159
160
161
162
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
163

164
165
166
167
    def _remove_close(self, points, radius=1.0):
        """Removes point too close within a certain radius from origin.

        Args:
168
            points (np.ndarray | :obj:`BasePoints`): Sweep points.
169
            radius (float, optional): Radius below which points are removed.
170
171
172
173
174
                Defaults to 1.0.

        Returns:
            np.ndarray: Points after removing.
        """
175
176
177
178
179
180
181
182
        if isinstance(points, np.ndarray):
            points_numpy = points
        elif isinstance(points, BasePoints):
            points_numpy = points.tensor.numpy()
        else:
            raise NotImplementedError
        x_filt = np.abs(points_numpy[:, 0]) < radius
        y_filt = np.abs(points_numpy[:, 1]) < radius
183
        not_close = np.logical_not(np.logical_and(x_filt, y_filt))
184
        return points[not_close]
185

zhangwenwei's avatar
zhangwenwei committed
186
    def __call__(self, results):
187
188
189
        """Call function to load multi-sweep point clouds from files.

        Args:
190
            results (dict): Result dict containing multi-sweep point cloud
191
192
193
                filenames.

        Returns:
194
            dict: The result dict containing the multi-sweep points data.
195
196
                Added key and value are described below.

197
                - points (np.ndarray | :obj:`BasePoints`): Multi-sweep point
198
                    cloud arrays.
199
        """
zhangwenwei's avatar
zhangwenwei committed
200
        points = results['points']
201
        points.tensor[:, 4] = 0
zhangwenwei's avatar
zhangwenwei committed
202
203
        sweep_points_list = [points]
        ts = results['timestamp']
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        if self.pad_empty_sweeps and len(results['sweeps']) == 0:
            for i in range(self.sweeps_num):
                if self.remove_close:
                    sweep_points_list.append(self._remove_close(points))
                else:
                    sweep_points_list.append(points)
        else:
            if len(results['sweeps']) <= self.sweeps_num:
                choices = np.arange(len(results['sweeps']))
            elif self.test_mode:
                choices = np.arange(self.sweeps_num)
            else:
                choices = np.random.choice(
                    len(results['sweeps']), self.sweeps_num, replace=False)
            for idx in choices:
                sweep = results['sweeps'][idx]
                points_sweep = self._load_points(sweep['data_path'])
                points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
                if self.remove_close:
                    points_sweep = self._remove_close(points_sweep)
                sweep_ts = sweep['timestamp'] / 1e6
                points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
                    'sensor2lidar_rotation'].T
                points_sweep[:, :3] += sweep['sensor2lidar_translation']
                points_sweep[:, 4] = ts - sweep_ts
229
                points_sweep = points.new_point(points_sweep)
230
231
                sweep_points_list.append(points_sweep)

232
233
        points = points.cat(sweep_points_list)
        points = points[:, self.use_dim]
zhangwenwei's avatar
zhangwenwei committed
234
235
236
237
        results['points'] = points
        return results

    def __repr__(self):
238
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
239
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
240
241


242
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
243
244
245
246
247
248
249
class PointSegClassMapping(object):
    """Map original semantic class to valid category ids.

    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).

    Args:
250
        valid_cat_ids (tuple[int]): A tuple of valid category.
251
252
        max_cat_id (int, optional): The max possible cat_id in input
            segmentation mask. Defaults to 40.
wuyuefeng's avatar
wuyuefeng committed
253
254
    """

255
256
257
258
    def __init__(self, valid_cat_ids, max_cat_id=40):
        assert max_cat_id >= np.max(valid_cat_ids), \
            'max_cat_id should be greater than maximum id in valid_cat_ids'

wuyuefeng's avatar
wuyuefeng committed
259
        self.valid_cat_ids = valid_cat_ids
260
261
262
263
264
265
266
267
        self.max_cat_id = int(max_cat_id)

        # build cat_id to class index mapping
        neg_cls = len(valid_cat_ids)
        self.cat_id2class = np.ones(
            self.max_cat_id + 1, dtype=np.int) * neg_cls
        for cls_idx, cat_id in enumerate(valid_cat_ids):
            self.cat_id2class[cat_id] = cls_idx
wuyuefeng's avatar
wuyuefeng committed
268
269

    def __call__(self, results):
270
271
272
273
274
275
        """Call function to map original semantic class to valid category ids.

        Args:
            results (dict): Result dict containing point semantic masks.

        Returns:
276
            dict: The result dict containing the mapped category ids.
277
278
279
280
                Updated key and value are described below.

                - pts_semantic_mask (np.ndarray): Mapped semantic masks.
        """
wuyuefeng's avatar
wuyuefeng committed
281
282
283
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']

284
        converted_pts_sem_mask = self.cat_id2class[pts_semantic_mask]
wuyuefeng's avatar
wuyuefeng committed
285

286
        results['pts_semantic_mask'] = converted_pts_sem_mask
wuyuefeng's avatar
wuyuefeng committed
287
288
289
        return results

    def __repr__(self):
290
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
291
        repr_str = self.__class__.__name__
292
293
        repr_str += f'(valid_cat_ids={self.valid_cat_ids}, '
        repr_str += f'max_cat_id={self.max_cat_id})'
wuyuefeng's avatar
wuyuefeng committed
294
295
296
        return repr_str


297
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
298
class NormalizePointsColor(object):
zhangwenwei's avatar
zhangwenwei committed
299
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
300
301
302
303
304
305
306
307
308

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

    def __init__(self, color_mean):
        self.color_mean = color_mean

    def __call__(self, results):
309
310
311
312
313
314
        """Call function to normalize color of points.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
315
            dict: The result dict containing the normalized points.
316
317
                Updated key and value are described below.

318
                - points (:obj:`BasePoints`): Points after color normalization.
319
        """
wuyuefeng's avatar
wuyuefeng committed
320
        points = results['points']
321
322
323
324
325
326
327
        assert points.attribute_dims is not None and \
            'color' in points.attribute_dims.keys(), \
            'Expect points have color attribute'
        if self.color_mean is not None:
            points.color = points.color - \
                points.color.new_tensor(self.color_mean)
        points.color = points.color / 255.0
wuyuefeng's avatar
wuyuefeng committed
328
329
330
331
        results['points'] = points
        return results

    def __repr__(self):
332
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
333
        repr_str = self.__class__.__name__
334
        repr_str += f'(color_mean={self.color_mean})'
wuyuefeng's avatar
wuyuefeng committed
335
336
337
        return repr_str


338
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
339
340
341
class LoadPointsFromFile(object):
    """Load Points From File.

342
    Load points from file.
wuyuefeng's avatar
wuyuefeng committed
343
344

    Args:
345
346
347
348
349
        coord_type (str): The type of coordinates of points cloud.
            Available options includes:
            - 'LIDAR': Points in LiDAR coordinates.
            - 'DEPTH': Points in depth coordinates, usually for indoor dataset.
            - 'CAMERA': Points in camera coordinates.
350
        load_dim (int, optional): The dimension of the loaded points.
351
            Defaults to 6.
352
        use_dim (list[int], optional): Which dimensions of the points to use.
liyinhao's avatar
liyinhao committed
353
354
            Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
            or use_dim=[0, 1, 2, 3] to use the intensity dimension.
355
356
357
358
359
360
        shift_height (bool, optional): Whether to use shifted height.
            Defaults to False.
        use_color (bool, optional): Whether to use color features.
            Defaults to False.
        file_client_args (dict, optional): Config dict of file clients,
            refer to
wuyuefeng's avatar
wuyuefeng committed
361
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
362
            for more details. Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
363
364
365
    """

    def __init__(self,
366
                 coord_type,
wuyuefeng's avatar
wuyuefeng committed
367
368
369
                 load_dim=6,
                 use_dim=[0, 1, 2],
                 shift_height=False,
370
                 use_color=False,
wuyuefeng's avatar
wuyuefeng committed
371
372
                 file_client_args=dict(backend='disk')):
        self.shift_height = shift_height
373
        self.use_color = use_color
wuyuefeng's avatar
wuyuefeng committed
374
375
376
377
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'
378
        assert coord_type in ['CAMERA', 'LIDAR', 'DEPTH']
wuyuefeng's avatar
wuyuefeng committed
379

380
        self.coord_type = coord_type
wuyuefeng's avatar
wuyuefeng committed
381
382
383
384
385
386
        self.load_dim = load_dim
        self.use_dim = use_dim
        self.file_client_args = file_client_args.copy()
        self.file_client = None

    def _load_points(self, pts_filename):
387
388
389
390
391
392
393
394
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
395
396
397
398
399
400
401
402
403
404
405
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
406

wuyuefeng's avatar
wuyuefeng committed
407
408
409
        return points

    def __call__(self, results):
410
411
412
413
414
415
        """Call function to load points data from file.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
416
            dict: The result dict containing the point clouds data.
417
418
                Added key and value are described below.

419
                - points (:obj:`BasePoints`): Point clouds data.
420
        """
wuyuefeng's avatar
wuyuefeng committed
421
422
423
424
        pts_filename = results['pts_filename']
        points = self._load_points(pts_filename)
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]
425
        attribute_dims = None
wuyuefeng's avatar
wuyuefeng committed
426
427
428
429

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
430
431
432
            points = np.concatenate(
                [points[:, :3],
                 np.expand_dims(height, 1), points[:, 3:]], 1)
433
434
            attribute_dims = dict(height=3)

435
436
437
438
439
440
441
442
443
444
445
        if self.use_color:
            assert len(self.use_dim) >= 6
            if attribute_dims is None:
                attribute_dims = dict()
            attribute_dims.update(
                dict(color=[
                    points.shape[1] - 3,
                    points.shape[1] - 2,
                    points.shape[1] - 1,
                ]))

446
447
448
        points_class = get_points_type(self.coord_type)
        points = points_class(
            points, points_dim=points.shape[-1], attribute_dims=attribute_dims)
wuyuefeng's avatar
wuyuefeng committed
449
        results['points'] = points
450

wuyuefeng's avatar
wuyuefeng committed
451
452
453
        return results

    def __repr__(self):
454
        """str: Return a string that describes the module."""
liyinhao's avatar
liyinhao committed
455
        repr_str = self.__class__.__name__ + '('
456
457
458
459
460
        repr_str += f'shift_height={self.shift_height}, '
        repr_str += f'use_color={self.use_color}, '
        repr_str += f'file_client_args={self.file_client_args}, '
        repr_str += f'load_dim={self.load_dim}, '
        repr_str += f'use_dim={self.use_dim})'
wuyuefeng's avatar
wuyuefeng committed
461
462
463
        return repr_str


464
@TRANSFORMS.register_module()
465
466
467
468
469
470
471
472
class LoadPointsFromDict(LoadPointsFromFile):
    """Load Points From Dict."""

    def __call__(self, results):
        assert 'points' in results
        return results


473
@TRANSFORMS.register_module()
wuyuefeng's avatar
wuyuefeng committed
474
475
476
477
478
479
480
481
482
483
484
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

    Args:
        with_bbox_3d (bool, optional): Whether to load 3D boxes.
            Defaults to True.
        with_label_3d (bool, optional): Whether to load 3D labels.
            Defaults to True.
485
486
        with_attr_label (bool, optional): Whether to load attribute label.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
487
488
489
490
491
492
493
494
495
496
497
498
        with_mask_3d (bool, optional): Whether to load 3D instance masks.
            for points. Defaults to False.
        with_seg_3d (bool, optional): Whether to load 3D semantic masks.
            for points. Defaults to False.
        with_bbox (bool, optional): Whether to load 2D boxes.
            Defaults to False.
        with_label (bool, optional): Whether to load 2D labels.
            Defaults to False.
        with_mask (bool, optional): Whether to load 2D instance masks.
            Defaults to False.
        with_seg (bool, optional): Whether to load 2D semantic masks.
            Defaults to False.
499
500
        with_bbox_depth (bool, optional): Whether to load 2.5D boxes.
            Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
501
502
        poly2mask (bool, optional): Whether to convert polygon annotations
            to bitmasks. Defaults to True.
503
504
        seg_3d_dtype (dtype, optional): Dtype of 3D semantic masks.
            Defaults to int64
wuyuefeng's avatar
wuyuefeng committed
505
506
507
508
509
510
511
512
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

    def __init__(self,
                 with_bbox_3d=True,
                 with_label_3d=True,
513
                 with_attr_label=False,
wuyuefeng's avatar
wuyuefeng committed
514
515
516
517
518
519
                 with_mask_3d=False,
                 with_seg_3d=False,
                 with_bbox=False,
                 with_label=False,
                 with_mask=False,
                 with_seg=False,
520
                 with_bbox_depth=False,
wuyuefeng's avatar
wuyuefeng committed
521
                 poly2mask=True,
522
                 seg_3d_dtype=np.int64,
wuyuefeng's avatar
wuyuefeng committed
523
524
525
526
527
528
529
530
531
                 file_client_args=dict(backend='disk')):
        super().__init__(
            with_bbox,
            with_label,
            with_mask,
            with_seg,
            poly2mask,
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
532
        self.with_bbox_depth = with_bbox_depth
wuyuefeng's avatar
wuyuefeng committed
533
        self.with_label_3d = with_label_3d
534
        self.with_attr_label = with_attr_label
wuyuefeng's avatar
wuyuefeng committed
535
536
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d
537
        self.seg_3d_dtype = seg_3d_dtype
wuyuefeng's avatar
wuyuefeng committed
538
539

    def _load_bboxes_3d(self, results):
540
541
542
543
544
545
546
547
        """Private function to load 3D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
548
549
550
551
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        results['bbox3d_fields'].append('gt_bboxes_3d')
        return results

552
553
554
555
556
557
558
559
560
561
562
563
564
    def _load_bboxes_depth(self, results):
        """Private function to load 2.5D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 2.5D bounding box annotations.
        """
        results['centers2d'] = results['ann_info']['centers2d']
        results['depths'] = results['ann_info']['depths']
        return results

wuyuefeng's avatar
wuyuefeng committed
565
    def _load_labels_3d(self, results):
566
567
568
569
570
571
572
573
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
574
575
576
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

577
578
579
580
581
582
583
584
585
586
587
588
    def _load_attr_labels(self, results):
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
        results['attr_labels'] = results['ann_info']['attr_labels']
        return results

wuyuefeng's avatar
wuyuefeng committed
589
    def _load_masks_3d(self, results):
590
591
592
593
594
595
596
597
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
598
599
600
601
602
603
        pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
604
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
605
606
607
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(
WRH's avatar
WRH committed
608
                pts_instance_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
609
610
611
612
613
614

        results['pts_instance_mask'] = pts_instance_mask
        results['pts_mask_fields'].append('pts_instance_mask')
        return results

    def _load_semantic_seg_3d(self, results):
615
616
617
618
619
620
621
622
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
623
624
625
626
627
628
629
        pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
630
631
            pts_semantic_mask = np.frombuffer(
                mask_bytes, dtype=self.seg_3d_dtype).copy()
wuyuefeng's avatar
wuyuefeng committed
632
633
634
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(
WRH's avatar
WRH committed
635
                pts_semantic_mask_path, dtype=np.int64)
wuyuefeng's avatar
wuyuefeng committed
636
637
638
639
640
641

        results['pts_semantic_mask'] = pts_semantic_mask
        results['pts_seg_fields'].append('pts_semantic_mask')
        return results

    def __call__(self, results):
642
643
644
645
646
647
648
649
650
        """Call function to load multiple types annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box, label, mask and
                semantic segmentation annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
651
652
653
654
655
        results = super().__call__(results)
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
            if results is None:
                return None
656
657
658
659
        if self.with_bbox_depth:
            results = self._load_bboxes_depth(results)
            if results is None:
                return None
wuyuefeng's avatar
wuyuefeng committed
660
661
        if self.with_label_3d:
            results = self._load_labels_3d(results)
662
663
        if self.with_attr_label:
            results = self._load_attr_labels(results)
wuyuefeng's avatar
wuyuefeng committed
664
665
666
667
668
669
670
671
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

    def __repr__(self):
672
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
673
674
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
liyinhao's avatar
liyinhao committed
675
676
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
677
        repr_str += f'{indent_str}with_attr_label={self.with_attr_label}, '
liyinhao's avatar
liyinhao committed
678
679
680
681
682
683
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
        repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
        repr_str += f'{indent_str}with_label={self.with_label}, '
        repr_str += f'{indent_str}with_mask={self.with_mask}, '
        repr_str += f'{indent_str}with_seg={self.with_seg}, '
684
        repr_str += f'{indent_str}with_bbox_depth={self.with_bbox_depth}, '
wuyuefeng's avatar
wuyuefeng committed
685
686
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str