loading.py 19.8 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import mmcv
import numpy as np

4
from mmdet.datasets.builder import PIPELINES
wuyuefeng's avatar
wuyuefeng committed
5
from mmdet.datasets.pipelines import LoadAnnotations
zhangwenwei's avatar
zhangwenwei committed
6
7


8
@PIPELINES.register_module()
zhangwenwei's avatar
zhangwenwei committed
9
class LoadMultiViewImageFromFiles(object):
zhangwenwei's avatar
zhangwenwei committed
10
    """Load multi channel images from a list of separate channel files.
zhangwenwei's avatar
zhangwenwei committed
11

liyinhao's avatar
liyinhao committed
12
13
14
15
16
17
    Expects results['img_filename'] to be a list of filenames.

    Args:
        to_float32 (bool): Whether to convert the img to float32.
            Defaults to False.
        color_type (str): Color type of the file. Defaults to 'unchanged'.
zhangwenwei's avatar
zhangwenwei committed
18
    """
zhangwenwei's avatar
zhangwenwei committed
19

zhangwenwei's avatar
zhangwenwei committed
20
21
22
    def __init__(self, to_float32=False, color_type='unchanged'):
        self.to_float32 = to_float32
        self.color_type = color_type
zhangwenwei's avatar
zhangwenwei committed
23
24

    def __call__(self, results):
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
        """Call function to load multi-view image from files.

        Args:
            results (dict): Result dict containing multi-view image filenames.

        Returns:
            dict: The result dict containing the multi-view image data. \
                Added keys and values are described below.

                - filename (str): Multi-view image filenames.
                - img (np.ndarray): Multi-view image arrays.
                - img_shape (tuple[int]): Shape of multi-view image arrays.
                - ori_shape (tuple[int]): Shape of original image arrays.
                - pad_shape (tuple[int]): Shape of padded image arrays.
                - scale_factor (float): Scale factor.
                - img_norm_cfg (dict): Normalization configuration of images.
        """
zhangwenwei's avatar
zhangwenwei committed
42
        filename = results['img_filename']
zhangwenwei's avatar
zhangwenwei committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
        img = np.stack(
            [mmcv.imread(name, self.color_type) for name in filename], axis=-1)
        if self.to_float32:
            img = img.astype(np.float32)
        results['filename'] = filename
        results['img'] = img
        results['img_shape'] = img.shape
        results['ori_shape'] = img.shape
        # Set initial values for default meta_keys
        results['pad_shape'] = img.shape
        results['scale_factor'] = 1.0
        num_channels = 1 if len(img.shape) < 3 else img.shape[2]
        results['img_norm_cfg'] = dict(
            mean=np.zeros(num_channels, dtype=np.float32),
            std=np.ones(num_channels, dtype=np.float32),
            to_rgb=False)
zhangwenwei's avatar
zhangwenwei committed
59
60
61
        return results

    def __repr__(self):
62
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
63
64
        return "{} (to_float32={}, color_type='{}')".format(
            self.__class__.__name__, self.to_float32, self.color_type)
zhangwenwei's avatar
zhangwenwei committed
65
66
67
68


@PIPELINES.register_module()
class LoadPointsFromMultiSweeps(object):
zhangwenwei's avatar
zhangwenwei committed
69
    """Load points from multiple sweeps.
zhangwenwei's avatar
zhangwenwei committed
70

zhangwenwei's avatar
zhangwenwei committed
71
72
73
    This is usually used for nuScenes dataset to utilize previous sweeps.

    Args:
74
75
76
        sweeps_num (int): Number of sweeps. Defaults to 10.
        load_dim (int): Dimension number of the loaded points. Defaults to 5.
        use_dim (list[int]): Which dimension to use. Defaults to [0, 1, 2, 4].
zhangwenwei's avatar
zhangwenwei committed
77
78
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
79
            for more details. Defaults to dict(backend='disk').
80
81
82
83
84
85
86
        pad_empty_sweeps (bool): Whether to repeat keyframe when
            sweeps is empty. Defaults to False.
        remove_close (bool): Whether to remove close points.
            Defaults to False.
        test_mode (bool): If test_model=True used for testing, it will not
            randomly sample sweeps but select the nearest N frames.
            Defaults to False.
zhangwenwei's avatar
zhangwenwei committed
87
88
89
90
91
    """

    def __init__(self,
                 sweeps_num=10,
                 load_dim=5,
92
93
94
95
96
                 use_dim=[0, 1, 2, 4],
                 file_client_args=dict(backend='disk'),
                 pad_empty_sweeps=False,
                 remove_close=False,
                 test_mode=False):
zhangwenwei's avatar
zhangwenwei committed
97
        self.load_dim = load_dim
zhangwenwei's avatar
zhangwenwei committed
98
        self.sweeps_num = sweeps_num
99
        self.use_dim = use_dim
zhangwenwei's avatar
zhangwenwei committed
100
101
        self.file_client_args = file_client_args.copy()
        self.file_client = None
102
103
104
        self.pad_empty_sweeps = pad_empty_sweeps
        self.remove_close = remove_close
        self.test_mode = test_mode
zhangwenwei's avatar
zhangwenwei committed
105
106

    def _load_points(self, pts_filename):
107
108
109
110
111
112
113
114
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
zhangwenwei's avatar
zhangwenwei committed
115
116
117
118
119
120
121
122
123
124
125
126
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points
zhangwenwei's avatar
zhangwenwei committed
127

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    def _remove_close(self, points, radius=1.0):
        """Removes point too close within a certain radius from origin.

        Args:
            points (np.ndarray): Sweep points.
            radius (float): Radius below which points are removed.
                Defaults to 1.0.

        Returns:
            np.ndarray: Points after removing.
        """
        x_filt = np.abs(points[:, 0]) < radius
        y_filt = np.abs(points[:, 1]) < radius
        not_close = np.logical_not(np.logical_and(x_filt, y_filt))
        return points[not_close, :]

zhangwenwei's avatar
zhangwenwei committed
144
    def __call__(self, results):
145
146
147
148
149
150
151
152
153
154
155
156
        """Call function to load multi-sweep point clouds from files.

        Args:
            results (dict): Result dict containing multi-sweep point cloud \
                filenames.

        Returns:
            dict: The result dict containing the multi-sweep points data. \
                Added key and value are described below.

                - points (np.ndarray): Multi-sweep point cloud arrays.
        """
zhangwenwei's avatar
zhangwenwei committed
157
158
159
160
        points = results['points']
        points[:, 4] = 0
        sweep_points_list = [points]
        ts = results['timestamp']
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        if self.pad_empty_sweeps and len(results['sweeps']) == 0:
            for i in range(self.sweeps_num):
                if self.remove_close:
                    sweep_points_list.append(self._remove_close(points))
                else:
                    sweep_points_list.append(points)
        else:
            if len(results['sweeps']) <= self.sweeps_num:
                choices = np.arange(len(results['sweeps']))
            elif self.test_mode:
                choices = np.arange(self.sweeps_num)
            else:
                choices = np.random.choice(
                    len(results['sweeps']), self.sweeps_num, replace=False)
            for idx in choices:
                sweep = results['sweeps'][idx]
                points_sweep = self._load_points(sweep['data_path'])
                points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
                if self.remove_close:
                    points_sweep = self._remove_close(points_sweep)
                sweep_ts = sweep['timestamp'] / 1e6
                points_sweep[:, :3] = points_sweep[:, :3] @ sweep[
                    'sensor2lidar_rotation'].T
                points_sweep[:, :3] += sweep['sensor2lidar_translation']
                points_sweep[:, 4] = ts - sweep_ts
                sweep_points_list.append(points_sweep)

        points = np.concatenate(sweep_points_list, axis=0)[:, self.use_dim]
zhangwenwei's avatar
zhangwenwei committed
189
190
191
192
        results['points'] = points
        return results

    def __repr__(self):
193
        """str: Return a string that describes the module."""
zhangwenwei's avatar
zhangwenwei committed
194
        return f'{self.__class__.__name__}(sweeps_num={self.sweeps_num})'
wuyuefeng's avatar
wuyuefeng committed
195
196
197
198
199
200
201
202
203
204


@PIPELINES.register_module()
class PointSegClassMapping(object):
    """Map original semantic class to valid category ids.

    Map valid classes as 0~len(valid_cat_ids)-1 and
    others as len(valid_cat_ids).

    Args:
205
        valid_cat_ids (tuple[int]): A tuple of valid category.
wuyuefeng's avatar
wuyuefeng committed
206
207
208
209
210
211
    """

    def __init__(self, valid_cat_ids):
        self.valid_cat_ids = valid_cat_ids

    def __call__(self, results):
212
213
214
215
216
217
218
219
220
221
222
        """Call function to map original semantic class to valid category ids.

        Args:
            results (dict): Result dict containing point semantic masks.

        Returns:
            dict: The result dict containing the mapped category ids. \
                Updated key and value are described below.

                - pts_semantic_mask (np.ndarray): Mapped semantic masks.
        """
wuyuefeng's avatar
wuyuefeng committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        assert 'pts_semantic_mask' in results
        pts_semantic_mask = results['pts_semantic_mask']
        neg_cls = len(self.valid_cat_ids)

        for i in range(pts_semantic_mask.shape[0]):
            if pts_semantic_mask[i] in self.valid_cat_ids:
                converted_id = self.valid_cat_ids.index(pts_semantic_mask[i])
                pts_semantic_mask[i] = converted_id
            else:
                pts_semantic_mask[i] = neg_cls

        results['pts_semantic_mask'] = pts_semantic_mask
        return results

    def __repr__(self):
238
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
239
240
241
242
243
244
245
        repr_str = self.__class__.__name__
        repr_str += '(valid_cat_ids={})'.format(self.valid_cat_ids)
        return repr_str


@PIPELINES.register_module()
class NormalizePointsColor(object):
zhangwenwei's avatar
zhangwenwei committed
246
    """Normalize color of points.
wuyuefeng's avatar
wuyuefeng committed
247
248
249
250
251
252
253
254
255

    Args:
        color_mean (list[float]): Mean color of the point cloud.
    """

    def __init__(self, color_mean):
        self.color_mean = color_mean

    def __call__(self, results):
256
257
258
259
260
261
262
263
264
265
266
        """Call function to normalize color of points.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
            dict: The result dict containing the normalized points. \
                Updated key and value are described below.

                - points (np.ndarray): Points after color normalization.
        """
wuyuefeng's avatar
wuyuefeng committed
267
268
269
270
271
272
273
274
        points = results['points']
        assert points.shape[1] >= 6,\
            f'Expect points have channel >=6, got {points.shape[1]}'
        points[:, 3:6] = points[:, 3:6] - np.array(self.color_mean) / 256.0
        results['points'] = points
        return results

    def __repr__(self):
275
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
276
277
278
279
280
281
282
283
284
285
286
287
288
        repr_str = self.__class__.__name__
        repr_str += '(color_mean={})'.format(self.color_mean)
        return repr_str


@PIPELINES.register_module()
class LoadPointsFromFile(object):
    """Load Points From File.

    Load sunrgbd and scannet points from file.

    Args:
        load_dim (int): The dimension of the loaded points.
liyinhao's avatar
liyinhao committed
289
            Defaults to 6.
wuyuefeng's avatar
wuyuefeng committed
290
        use_dim (list[int]): Which dimensions of the points to be used.
liyinhao's avatar
liyinhao committed
291
292
293
            Defaults to [0, 1, 2]. For KITTI dataset, set use_dim=4
            or use_dim=[0, 1, 2, 3] to use the intensity dimension.
        shift_height (bool): Whether to use shifted height. Defaults to False.
wuyuefeng's avatar
wuyuefeng committed
294
295
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
liyinhao's avatar
liyinhao committed
296
            for more details. Defaults to dict(backend='disk').
wuyuefeng's avatar
wuyuefeng committed
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
    """

    def __init__(self,
                 load_dim=6,
                 use_dim=[0, 1, 2],
                 shift_height=False,
                 file_client_args=dict(backend='disk')):
        self.shift_height = shift_height
        if isinstance(use_dim, int):
            use_dim = list(range(use_dim))
        assert max(use_dim) < load_dim, \
            f'Expect all used dimensions < {load_dim}, got {use_dim}'

        self.load_dim = load_dim
        self.use_dim = use_dim
        self.file_client_args = file_client_args.copy()
        self.file_client = None

    def _load_points(self, pts_filename):
316
317
318
319
320
321
322
323
        """Private function to load point clouds data.

        Args:
            pts_filename (str): Filename of point clouds data.

        Returns:
            np.ndarray: An array containing point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            pts_bytes = self.file_client.get(pts_filename)
            points = np.frombuffer(pts_bytes, dtype=np.float32)
        except ConnectionError:
            mmcv.check_file_exist(pts_filename)
            if pts_filename.endswith('.npy'):
                points = np.load(pts_filename)
            else:
                points = np.fromfile(pts_filename, dtype=np.float32)
        return points

    def __call__(self, results):
338
339
340
341
342
343
344
345
346
347
348
        """Call function to load points data from file.

        Args:
            results (dict): Result dict containing point clouds data.

        Returns:
            dict: The result dict containing the point clouds data. \
                Added key and value are described below.

                - points (np.ndarray): Point clouds data.
        """
wuyuefeng's avatar
wuyuefeng committed
349
350
351
352
353
354
355
356
357
358
359
360
361
        pts_filename = results['pts_filename']
        points = self._load_points(pts_filename)
        points = points.reshape(-1, self.load_dim)
        points = points[:, self.use_dim]

        if self.shift_height:
            floor_height = np.percentile(points[:, 2], 0.99)
            height = points[:, 2] - floor_height
            points = np.concatenate([points, np.expand_dims(height, 1)], 1)
        results['points'] = points
        return results

    def __repr__(self):
362
        """str: Return a string that describes the module."""
liyinhao's avatar
liyinhao committed
363
364
365
366
367
        repr_str = self.__class__.__name__ + '('
        repr_str += 'shift_height={}, '.format(self.shift_height)
        repr_str += 'file_client_args={}), '.format(self.file_client_args)
        repr_str += 'load_dim={}, '.format(self.load_dim)
        repr_str += 'use_dim={})'.format(self.use_dim)
wuyuefeng's avatar
wuyuefeng committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
        return repr_str


@PIPELINES.register_module()
class LoadAnnotations3D(LoadAnnotations):
    """Load Annotations3D.

    Load instance mask and semantic mask of points and
    encapsulate the items into related fields.

    Args:
        with_bbox_3d (bool, optional): Whether to load 3D boxes.
            Defaults to True.
        with_label_3d (bool, optional): Whether to load 3D labels.
            Defaults to True.
        with_mask_3d (bool, optional): Whether to load 3D instance masks.
            for points. Defaults to False.
        with_seg_3d (bool, optional): Whether to load 3D semantic masks.
            for points. Defaults to False.
        with_bbox (bool, optional): Whether to load 2D boxes.
            Defaults to False.
        with_label (bool, optional): Whether to load 2D labels.
            Defaults to False.
        with_mask (bool, optional): Whether to load 2D instance masks.
            Defaults to False.
        with_seg (bool, optional): Whether to load 2D semantic masks.
            Defaults to False.
        poly2mask (bool, optional): Whether to convert polygon annotations
            to bitmasks. Defaults to True.
        file_client_args (dict): Config dict of file clients, refer to
            https://github.com/open-mmlab/mmcv/blob/master/mmcv/fileio/file_client.py
            for more details.
    """

    def __init__(self,
                 with_bbox_3d=True,
                 with_label_3d=True,
                 with_mask_3d=False,
                 with_seg_3d=False,
                 with_bbox=False,
                 with_label=False,
                 with_mask=False,
                 with_seg=False,
                 poly2mask=True,
                 file_client_args=dict(backend='disk')):
        super().__init__(
            with_bbox,
            with_label,
            with_mask,
            with_seg,
            poly2mask,
            file_client_args=file_client_args)
        self.with_bbox_3d = with_bbox_3d
        self.with_label_3d = with_label_3d
        self.with_mask_3d = with_mask_3d
        self.with_seg_3d = with_seg_3d

    def _load_bboxes_3d(self, results):
426
427
428
429
430
431
432
433
        """Private function to load 3D bounding box annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
434
435
436
437
438
        results['gt_bboxes_3d'] = results['ann_info']['gt_bboxes_3d']
        results['bbox3d_fields'].append('gt_bboxes_3d')
        return results

    def _load_labels_3d(self, results):
439
440
441
442
443
444
445
446
        """Private function to load label annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded label annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
447
448
449
450
        results['gt_labels_3d'] = results['ann_info']['gt_labels_3d']
        return results

    def _load_masks_3d(self, results):
451
452
453
454
455
456
457
458
        """Private function to load 3D mask annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D mask annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        pts_instance_mask_path = results['ann_info']['pts_instance_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_instance_mask_path)
            pts_instance_mask = np.frombuffer(mask_bytes, dtype=np.int)
        except ConnectionError:
            mmcv.check_file_exist(pts_instance_mask_path)
            pts_instance_mask = np.fromfile(
                pts_instance_mask_path, dtype=np.long)

        results['pts_instance_mask'] = pts_instance_mask
        results['pts_mask_fields'].append('pts_instance_mask')
        return results

    def _load_semantic_seg_3d(self, results):
476
477
478
479
480
481
482
483
        """Private function to load 3D semantic segmentation annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing the semantic segmentation annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
        pts_semantic_mask_path = results['ann_info']['pts_semantic_mask_path']

        if self.file_client is None:
            self.file_client = mmcv.FileClient(**self.file_client_args)
        try:
            mask_bytes = self.file_client.get(pts_semantic_mask_path)
            # add .copy() to fix read-only bug
            pts_semantic_mask = np.frombuffer(mask_bytes, dtype=np.int).copy()
        except ConnectionError:
            mmcv.check_file_exist(pts_semantic_mask_path)
            pts_semantic_mask = np.fromfile(
                pts_semantic_mask_path, dtype=np.long)

        results['pts_semantic_mask'] = pts_semantic_mask
        results['pts_seg_fields'].append('pts_semantic_mask')
        return results

    def __call__(self, results):
502
503
504
505
506
507
508
509
510
        """Call function to load multiple types annotations.

        Args:
            results (dict): Result dict from :obj:`mmdet3d.CustomDataset`.

        Returns:
            dict: The dict containing loaded 3D bounding box, label, mask and
                semantic segmentation annotations.
        """
wuyuefeng's avatar
wuyuefeng committed
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        results = super().__call__(results)
        if self.with_bbox_3d:
            results = self._load_bboxes_3d(results)
            if results is None:
                return None
        if self.with_label_3d:
            results = self._load_labels_3d(results)
        if self.with_mask_3d:
            results = self._load_masks_3d(results)
        if self.with_seg_3d:
            results = self._load_semantic_seg_3d(results)

        return results

    def __repr__(self):
526
        """str: Return a string that describes the module."""
wuyuefeng's avatar
wuyuefeng committed
527
528
        indent_str = '    '
        repr_str = self.__class__.__name__ + '(\n'
liyinhao's avatar
liyinhao committed
529
530
531
532
533
534
535
536
        repr_str += f'{indent_str}with_bbox_3d={self.with_bbox_3d}, '
        repr_str += f'{indent_str}with_label_3d={self.with_label_3d}, '
        repr_str += f'{indent_str}with_mask_3d={self.with_mask_3d}, '
        repr_str += f'{indent_str}with_seg_3d={self.with_seg_3d}, '
        repr_str += f'{indent_str}with_bbox={self.with_bbox}, '
        repr_str += f'{indent_str}with_label={self.with_label}, '
        repr_str += f'{indent_str}with_mask={self.with_mask}, '
        repr_str += f'{indent_str}with_seg={self.with_seg}, '
wuyuefeng's avatar
wuyuefeng committed
537
538
        repr_str += f'{indent_str}poly2mask={self.poly2mask})'
        return repr_str