Commit ed115937 authored by VVsssssk's avatar VVsssssk Committed by ChaimZhu
Browse files

[Refactor]Refactor nus dataset

parent f739803c
...@@ -6,17 +6,14 @@ class_names = [ ...@@ -6,17 +6,14 @@ class_names = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
] ]
metainfo = dict(CLASSES=class_names)
dataset_type = 'NuScenesDataset' dataset_type = 'NuScenesDataset'
data_root = 'data/nuscenes/' data_root = 'data/nuscenes/'
# Input modality for nuScenes dataset, this is consistent with the submission # Input modality for nuScenes dataset, this is consistent with the submission
# format which requires the information in input_modality. # format which requires the information in input_modality.
input_modality = dict( input_modality = dict(use_lidar=True, use_camera=False)
use_lidar=True,
use_camera=False,
use_radar=False,
use_map=False,
use_external=False)
file_client_args = dict(backend='disk') file_client_args = dict(backend='disk')
data_prefix = dict(pts='samples/LIDAR_TOP', img='')
# Uncomment the following if use ceph or other file clients. # Uncomment the following if use ceph or other file clients.
# See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient # See https://mmcv.readthedocs.io/en/latest/api.html#mmcv.fileio.FileClient
# for more details. # for more details.
...@@ -48,8 +45,9 @@ train_pipeline = [ ...@@ -48,8 +45,9 @@ train_pipeline = [
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectNameFilter', classes=class_names), dict(type='ObjectNameFilter', classes=class_names),
dict(type='PointShuffle'), dict(type='PointShuffle'),
dict(type='DefaultFormatBundle3D', class_names=class_names), dict(
dict(type='Collect3D', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
] ]
test_pipeline = [ test_pipeline = [
dict( dict(
...@@ -61,6 +59,7 @@ test_pipeline = [ ...@@ -61,6 +59,7 @@ test_pipeline = [
dict( dict(
type='LoadPointsFromMultiSweeps', type='LoadPointsFromMultiSweeps',
sweeps_num=10, sweeps_num=10,
test_mode=True,
file_client_args=file_client_args), file_client_args=file_client_args),
dict( dict(
type='MultiScaleFlipAug3D', type='MultiScaleFlipAug3D',
...@@ -75,13 +74,9 @@ test_pipeline = [ ...@@ -75,13 +74,9 @@ test_pipeline = [
translation_std=[0, 0, 0]), translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'), dict(type='RandomFlip3D'),
dict( dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range), type='PointsRangeFilter', point_cloud_range=point_cloud_range)
dict( ]),
type='DefaultFormatBundle3D', dict(type='Pack3DDetInputs', keys=['points'])
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
])
] ]
# construct a pipeline for data and gt loading in show function # construct a pipeline for data and gt loading in show function
# please keep its loading function consistent with test_pipeline (e.g. client) # please keep its loading function consistent with test_pipeline (e.g. client)
...@@ -95,48 +90,63 @@ eval_pipeline = [ ...@@ -95,48 +90,63 @@ eval_pipeline = [
dict( dict(
type='LoadPointsFromMultiSweeps', type='LoadPointsFromMultiSweeps',
sweeps_num=10, sweeps_num=10,
test_mode=True,
file_client_args=file_client_args), file_client_args=file_client_args),
dict( dict(type='Pack3DDetInputs', keys=['points'])
type='DefaultFormatBundle3D',
class_names=class_names,
with_label=False),
dict(type='Collect3D', keys=['points'])
] ]
train_dataloader = dict(
data = dict( batch_size=4,
samples_per_gpu=4, num_workers=4,
workers_per_gpu=4, persistent_workers=True,
train=dict( sampler=dict(type='DefaultSampler', shuffle=True),
dataset=dict(
type=dataset_type, type=dataset_type,
data_root=data_root, data_root=data_root,
ann_file=data_root + 'nuscenes_infos_train.pkl', ann_file='nuscenes_infos_train.pkl',
pipeline=train_pipeline, pipeline=train_pipeline,
classes=class_names, metainfo=metainfo,
modality=input_modality, modality=input_modality,
test_mode=False, test_mode=False,
data_prefix=data_prefix,
# we use box_type_3d='LiDAR' in kitti and nuscenes dataset # we use box_type_3d='LiDAR' in kitti and nuscenes dataset
# and box_type_3d='Depth' in sunrgbd and scannet dataset. # and box_type_3d='Depth' in sunrgbd and scannet dataset.
box_type_3d='LiDAR'), box_type_3d='LiDAR'))
val=dict( test_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type, type=dataset_type,
data_root=data_root, data_root=data_root,
ann_file=data_root + 'nuscenes_infos_val.pkl', ann_file='nuscenes_infos_val.pkl',
pipeline=test_pipeline, pipeline=test_pipeline,
classes=class_names, metainfo=metainfo,
modality=input_modality, modality=input_modality,
data_prefix=data_prefix,
test_mode=True, test_mode=True,
box_type_3d='LiDAR'), box_type_3d='LiDAR'))
test=dict( val_dataloader = dict(
batch_size=1,
num_workers=1,
persistent_workers=True,
drop_last=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type, type=dataset_type,
data_root=data_root, data_root=data_root,
ann_file=data_root + 'nuscenes_infos_val.pkl', ann_file='nuscenes_infos_val.pkl',
pipeline=test_pipeline, pipeline=test_pipeline,
classes=class_names, metainfo=metainfo,
modality=input_modality, modality=input_modality,
test_mode=True, test_mode=True,
data_prefix=data_prefix,
box_type_3d='LiDAR')) box_type_3d='LiDAR'))
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation val_evaluator = dict(
# interval to be 24. Please change the interval accordingly if you do not type='NuScenesMetric',
# use a default schedule. data_root=data_root,
evaluation = dict(interval=24, pipeline=eval_pipeline) ann_file=data_root + 'nuscenes_infos_val.pkl',
metric='bbox')
test_evaluator = val_evaluator
...@@ -6,6 +6,7 @@ ...@@ -6,6 +6,7 @@
voxel_size = [0.25, 0.25, 8] voxel_size = [0.25, 0.25, 8]
model = dict( model = dict(
type='MVXFasterRCNN', type='MVXFasterRCNN',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
pts_voxel_layer=dict( pts_voxel_layer=dict(
max_num_points=64, max_num_points=64,
point_cloud_range=[-50, -50, -5, 50, 50, 3], point_cloud_range=[-50, -50, -5, 50, 50, 3],
...@@ -62,19 +63,21 @@ model = dict( ...@@ -62,19 +63,21 @@ model = dict(
dir_offset=-0.7854, # -pi / 4 dir_offset=-0.7854, # -pi / 4
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9), bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9),
loss_cls=dict( loss_cls=dict(
type='FocalLoss', type='mmdet.FocalLoss',
use_sigmoid=True, use_sigmoid=True,
gamma=2.0, gamma=2.0,
alpha=0.25, alpha=0.25,
loss_weight=1.0), loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict( loss_dir=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), type='mmdet.CrossEntropyLoss', use_sigmoid=False,
loss_weight=0.2)),
# model training and testing settings # model training and testing settings
train_cfg=dict( train_cfg=dict(
pts=dict( pts=dict(
assigner=dict( assigner=dict(
type='MaxIoUAssigner', type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'), iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6, pos_iou_thr=0.6,
neg_iou_thr=0.3, neg_iou_thr=0.3,
......
# optimizer # optimizer
# This schedule is mainly used by models on nuScenes dataset # This schedule is mainly used by models on nuScenes dataset
optimizer = dict(type='AdamW', lr=0.001, weight_decay=0.01) lr = 0.001
# max_norm=10 is better for SECOND optim_wrapper = dict(
optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2)) type='OptimWrapper',
lr_config = dict( optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01),
policy='step', # max_norm=10 is better for SECOND
warmup='linear', clip_grad=dict(max_norm=35, norm_type=2))
warmup_iters=1000,
warmup_ratio=1.0 / 1000, # training schedule for 2x
step=[20, 23]) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=1)
momentum_config = None val_cfg = dict(type='ValLoop')
# runtime settings test_cfg = dict(type='TestLoop')
runner = dict(type='EpochBasedRunner', max_epochs=24)
# learning rate
param_scheduler = [
dict(
type='LinearLR',
start_factor=1.0 / 1000,
by_epoch=False,
begin=0,
end=1000),
dict(
type='MultiStepLR',
begin=0,
end=24,
by_epoch=True,
milestones=[20, 23],
gamma=0.1)
]
...@@ -3,3 +3,9 @@ _base_ = [ ...@@ -3,3 +3,9 @@ _base_ = [
'../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule_2x.py', '../_base_/datasets/nus-3d.py', '../_base_/schedules/schedule_2x.py',
'../_base_/default_runtime.py' '../_base_/default_runtime.py'
] ]
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 24. Please change the interval accordingly if you do not
# use a default schedule.
train_cfg = dict(val_interval=24)
_base_ = './hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py' _base_ = './hv_pointpillars_fpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2) train_dataloader = dict(batch_size=2, num_workers=2)
# fp16 settings, the loss scale is specifically tuned to avoid Nan # fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.) fp16 = dict(loss_scale=32.)
...@@ -40,3 +40,9 @@ model = dict( ...@@ -40,3 +40,9 @@ model = dict(
custom_values=[0, 0], custom_values=[0, 0],
rotations=[0, 1.57], rotations=[0, 1.57],
reshape_out=True))) reshape_out=True)))
# For nuScenes dataset, we usually evaluate the model at the end of training.
# Since the models are trained by 24 epochs by default, we set evaluation
# interval to be 24. Please change the interval accordingly if you do not
# use a default schedule.
train_cfg = dict(val_interval=24)
_base_ = './hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py' _base_ = './hv_pointpillars_secfpn_sbn-all_4x8_2x_nus-3d.py'
data = dict(samples_per_gpu=2, workers_per_gpu=2) train_dataloader = dict(batch_size=2, num_workers=2)
# fp16 settings, the loss scale is specifically tuned to avoid Nan # fp16 settings, the loss scale is specifically tuned to avoid Nan
fp16 = dict(loss_scale=32.) fp16 = dict(loss_scale=32.)
...@@ -227,8 +227,12 @@ class Det3DDataset(BaseDataset): ...@@ -227,8 +227,12 @@ class Det3DDataset(BaseDataset):
if self.modality['use_camera']: if self.modality['use_camera']:
for cam_id, img_info in info['images'].items(): for cam_id, img_info in info['images'].items():
if 'img_path' in img_info: if 'img_path' in img_info:
img_info['img_path'] = osp.join( if cam_id in self.data_prefix:
self.data_prefix.get('img', ''), img_info['img_path']) cam_prefix = self.data_prefix[cam_id]
else:
cam_prefix = self.data_prefix.get('img', '')
img_info['img_path'] = osp.join(cam_prefix,
img_info['img_path'])
if not self.test_mode: if not self.test_mode:
# used in traing # used in traing
......
This diff is collapsed.
...@@ -101,7 +101,7 @@ class LoadImageFromFileMono3D(LoadImageFromFile): ...@@ -101,7 +101,7 @@ class LoadImageFromFileMono3D(LoadImageFromFile):
@TRANSFORMS.register_module() @TRANSFORMS.register_module()
class LoadPointsFromMultiSweeps(object): class LoadPointsFromMultiSweeps(BaseTransform):
"""Load points from multiple sweeps. """Load points from multiple sweeps.
This is usually used for nuScenes dataset to utilize previous sweeps. This is usually used for nuScenes dataset to utilize previous sweeps.
...@@ -186,7 +186,7 @@ class LoadPointsFromMultiSweeps(object): ...@@ -186,7 +186,7 @@ class LoadPointsFromMultiSweeps(object):
not_close = np.logical_not(np.logical_and(x_filt, y_filt)) not_close = np.logical_not(np.logical_and(x_filt, y_filt))
return points[not_close] return points[not_close]
def __call__(self, results): def transform(self, results):
"""Call function to load multi-sweep point clouds from files. """Call function to load multi-sweep point clouds from files.
Args: Args:
...@@ -204,30 +204,35 @@ class LoadPointsFromMultiSweeps(object): ...@@ -204,30 +204,35 @@ class LoadPointsFromMultiSweeps(object):
points.tensor[:, 4] = 0 points.tensor[:, 4] = 0
sweep_points_list = [points] sweep_points_list = [points]
ts = results['timestamp'] ts = results['timestamp']
if self.pad_empty_sweeps and len(results['sweeps']) == 0: if 'lidar_sweeps' not in results:
for i in range(self.sweeps_num): if self.pad_empty_sweeps:
if self.remove_close: for i in range(self.sweeps_num):
sweep_points_list.append(self._remove_close(points)) if self.remove_close:
else: sweep_points_list.append(self._remove_close(points))
sweep_points_list.append(points) else:
sweep_points_list.append(points)
else: else:
if len(results['sweeps']) <= self.sweeps_num: if len(results['lidar_sweeps']) <= self.sweeps_num:
choices = np.arange(len(results['sweeps'])) choices = np.arange(len(results['lidar_sweeps']))
elif self.test_mode: elif self.test_mode:
choices = np.arange(self.sweeps_num) choices = np.arange(self.sweeps_num)
else: else:
choices = np.random.choice( choices = np.random.choice(
len(results['sweeps']), self.sweeps_num, replace=False) len(results['lidar_sweeps']),
self.sweeps_num,
replace=False)
for idx in choices: for idx in choices:
sweep = results['sweeps'][idx] sweep = results['lidar_sweeps'][idx]
points_sweep = self._load_points(sweep['data_path']) points_sweep = self._load_points(
sweep['lidar_points']['lidar_path'])
points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim) points_sweep = np.copy(points_sweep).reshape(-1, self.load_dim)
if self.remove_close: if self.remove_close:
points_sweep = self._remove_close(points_sweep) points_sweep = self._remove_close(points_sweep)
sweep_ts = sweep['timestamp'] / 1e6 # bc-breaking: Timestamp has divided 1e6 in pkl infos.
points_sweep[:, :3] = points_sweep[:, :3] @ sweep[ sweep_ts = sweep['timestamp']
'sensor2lidar_rotation'].T lidar2cam = np.array(sweep['lidar_points']['lidar2sensor'])
points_sweep[:, :3] += sweep['sensor2lidar_translation'] points_sweep[:, :3] = points_sweep[:, :3] @ lidar2cam[:3, :3]
points_sweep[:, :3] -= lidar2cam[:3, 3]
points_sweep[:, 4] = ts - sweep_ts points_sweep[:, 4] = ts - sweep_ts
points_sweep = points.new_point(points_sweep) points_sweep = points.new_point(points_sweep)
sweep_points_list.append(points_sweep) sweep_points_list.append(points_sweep)
......
# Copyright (c) OpenMMLab. All rights reserved. # Copyright (c) OpenMMLab. All rights reserved.
import mmcv import mmcv
import numpy as np
from mmcv.transforms import LoadImageFromFile from mmcv.transforms import LoadImageFromFile
from pyquaternion import Quaternion
# yapf: disable # yapf: disable
from mmdet3d.datasets.pipelines import (LoadAnnotations3D, from mmdet3d.datasets.pipelines import (LoadAnnotations3D,
...@@ -137,3 +139,14 @@ def extract_result_dict(results, key): ...@@ -137,3 +139,14 @@ def extract_result_dict(results, key):
if isinstance(data, mmcv.parallel.DataContainer): if isinstance(data, mmcv.parallel.DataContainer):
data = data._data data = data._data
return data return data
def convert_quaternion_to_matrix(quaternion: list,
translation: list = None) -> list:
"""Compute a transform matrix by given quaternion and translation
vector."""
result = np.eye(4)
result[:3, :3] = Quaternion(quaternion).rotation_matrix
if translation is not None:
result[:3, 3] = np.array(translation)
return result.astype(np.float32).tolist()
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
from mmcv.transforms.base import BaseTransform
from mmengine.data import InstanceData
from mmengine.registry import TRANSFORMS
from mmdet3d.core.bbox import LiDARInstance3DBoxes
from mmdet3d.core.data_structures import Det3DDataSample
from mmdet3d.datasets import NuScenesDataset
def _generate_nus_dataset_config():
data_root = 'tests/data/nuscenes'
ann_file = 'nus_info.pkl'
classes = [
'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'
]
if 'Identity' not in TRANSFORMS:
@TRANSFORMS.register_module()
class Identity(BaseTransform):
def transform(self, info):
packed_input = dict(data_sample=Det3DDataSample())
if 'ann_info' in info:
packed_input['data_sample'].gt_instances_3d = InstanceData(
)
packed_input[
'data_sample'].gt_instances_3d.labels_3d = info[
'ann_info']['gt_labels_3d']
return packed_input
pipeline = [
dict(type='Identity'),
]
modality = dict(use_lidar=True, use_camera=True)
data_prefix = dict(pts='samples/LIDAR_TOP', img='samples/CAM_BACK_LEFT')
return data_root, ann_file, classes, data_prefix, pipeline, modality
def test_getitem():
np.random.seed(0)
data_root, ann_file, classes, data_prefix, pipeline, modality = \
_generate_nus_dataset_config()
nus_dataset = NuScenesDataset(
data_root,
ann_file,
data_prefix=data_prefix,
pipeline=pipeline,
metainfo=dict(CLASSES=classes),
modality=modality)
nus_dataset.prepare_data(0)
input_dict = nus_dataset.get_data_info(0)
# assert the the path should contains data_prefix and data_root
assert data_prefix['pts'] in input_dict['lidar_points']['lidar_path']
assert input_dict['lidar_points'][
'lidar_path'] == 'tests/data/nuscenes/samples/LIDAR_TOP/' \
'n015-2018-08-02-17-16-37+0800__LIDAR_TOP__' \
'1533201470948018.pcd.bin'
for cam_id, img_info in input_dict['images'].items():
if 'img_path' in img_info:
assert data_prefix['img'] in img_info['img_path']
assert data_root in img_info['img_path']
ann_info = nus_dataset.parse_ann_info(input_dict)
# assert the keys in ann_info and the type
assert 'gt_labels_3d' in ann_info
assert ann_info['gt_labels_3d'].dtype == np.int64
assert len(ann_info['gt_labels_3d']) == 37
assert 'gt_bboxes_3d' in ann_info
assert isinstance(ann_info['gt_bboxes_3d'], LiDARInstance3DBoxes)
assert len(nus_dataset.metainfo['CLASSES']) == 10
assert input_dict['token'] == 'fd8420396768425eabec9bdddf7e64b6'
assert input_dict['timestamp'] == 1533201470.448696
...@@ -15,6 +15,8 @@ from os import path as osp ...@@ -15,6 +15,8 @@ from os import path as osp
import mmcv import mmcv
import numpy as np import numpy as np
from mmdet3d.datasets.utils import convert_quaternion_to_matrix
def get_empty_instance(): def get_empty_instance():
"""Empty annotation for single instance.""" """Empty annotation for single instance."""
...@@ -156,6 +158,7 @@ def get_empty_standard_data_info(): ...@@ -156,6 +158,7 @@ def get_empty_standard_data_info():
radar_points=get_empty_radar_points(), radar_points=get_empty_radar_points(),
# (list[dict], optional): Image sweeps data. # (list[dict], optional): Image sweeps data.
image_sweeps=[], image_sweeps=[],
lidar_sweeps=[],
instances=[], instances=[],
# (list[dict], optional): Required by object # (list[dict], optional): Required by object
# detection, instance to be ignored during training. # detection, instance to be ignored during training.
...@@ -203,6 +206,116 @@ def clear_data_info_unused_keys(data_info): ...@@ -203,6 +206,116 @@ def clear_data_info_unused_keys(data_info):
return data_info, empty_flag return data_info, empty_flag
def update_nuscenes_infos(pkl_path, out_dir):
print(f'{pkl_path} will be modified.')
if out_dir in pkl_path:
print(f'Warning, you may overwriting '
f'the original data {pkl_path}.')
print(f'Reading from input file: {pkl_path}.')
data_list = mmcv.load(pkl_path)
METAINFO = {
'CLASSES':
('car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle',
'motorcycle', 'pedestrian', 'traffic_cone', 'barrier'),
'DATASET':
'Nuscenes',
'version':
data_list['metadata']['version']
}
print('Start updating:')
converted_list = []
for i, ori_info_dict in enumerate(
mmcv.track_iter_progress(data_list['infos'])):
temp_data_info = get_empty_standard_data_info()
temp_data_info['sample_idx'] = i
temp_data_info['token'] = ori_info_dict['token']
temp_data_info['ego2global'] = convert_quaternion_to_matrix(
ori_info_dict['ego2global_rotation'],
ori_info_dict['ego2global_translation'])
temp_data_info['lidar_points']['lidar_path'] = ori_info_dict[
'lidar_path'].split('/')[-1]
temp_data_info['lidar_points'][
'lidar2ego'] = convert_quaternion_to_matrix(
ori_info_dict['lidar2ego_rotation'],
ori_info_dict['lidar2ego_translation'])
# bc-breaking: Timestamp has divided 1e6 in pkl infos.
temp_data_info['timestamp'] = ori_info_dict['timestamp'] / 1e6
for ori_sweep in ori_info_dict['sweeps']:
temp_lidar_sweep = get_single_lidar_sweep()
temp_lidar_sweep['lidar_points'][
'lidar2ego'] = convert_quaternion_to_matrix(
ori_sweep['sensor2ego_rotation'],
ori_sweep['sensor2ego_translation'])
temp_lidar_sweep['ego2global'] = convert_quaternion_to_matrix(
ori_sweep['ego2global_rotation'],
ori_sweep['ego2global_translation'])
lidar2sensor = np.eye(4)
lidar2sensor[:3, :3] = ori_sweep['sensor2lidar_rotation'].T
lidar2sensor[:3, 3] = -ori_sweep['sensor2lidar_translation']
temp_lidar_sweep['lidar_points'][
'lidar2sensor'] = lidar2sensor.astype(np.float32).tolist()
temp_lidar_sweep['timestamp'] = ori_sweep['timestamp'] / 1e6
temp_lidar_sweep['lidar_points']['lidar_path'] = ori_sweep[
'data_path']
temp_lidar_sweep['sample_data_token'] = ori_sweep[
'sample_data_token']
temp_data_info['lidar_sweeps'].append(temp_lidar_sweep)
temp_data_info['images'] = {}
for cam in ori_info_dict['cams']:
empty_img_info = get_empty_img_info()
empty_img_info['img_path'] = ori_info_dict['cams'][cam][
'data_path'].split('/')[-1]
empty_img_info['cam2img'] = ori_info_dict['cams'][cam][
'cam_intrinsic'].tolist()
empty_img_info['sample_data_token'] = ori_info_dict['cams'][cam][
'sample_data_token']
# bc-breaking: Timestamp has divided 1e6 in pkl infos.
empty_img_info[
'timestamp'] = ori_info_dict['cams'][cam]['timestamp'] / 1e6
empty_img_info['cam2ego'] = convert_quaternion_to_matrix(
ori_info_dict['cams'][cam]['sensor2ego_rotation'],
ori_info_dict['cams'][cam]['sensor2ego_translation'])
lidar2sensor = np.eye(4)
lidar2sensor[:3, :3] = ori_info_dict['cams'][cam][
'sensor2lidar_rotation'].T
lidar2sensor[:3, 3] = -ori_info_dict['cams'][cam][
'sensor2lidar_translation']
empty_img_info['lidar2cam'] = lidar2sensor.astype(
np.float32).tolist()
temp_data_info['images'][cam] = empty_img_info
num_instances = ori_info_dict['gt_boxes'].shape[0]
ignore_class_name = set()
for i in range(num_instances):
empty_instance = get_empty_instance()
empty_instance['bbox_3d'] = ori_info_dict['gt_boxes'][
i, :].tolist()
if ori_info_dict['gt_names'][i] in METAINFO['CLASSES']:
empty_instance['bbox_label'] = METAINFO['CLASSES'].index(
ori_info_dict['gt_names'][i])
else:
ignore_class_name.add(ori_info_dict['gt_names'][i])
empty_instance['bbox_label'] = -1
empty_instance['bbox_label_3d'] = copy.deepcopy(
empty_instance['bbox_label'])
empty_instance['velocity'] = ori_info_dict['gt_velocity'][
i, :].tolist()
empty_instance['num_lidar_pts'] = ori_info_dict['num_lidar_pts'][i]
empty_instance['num_radar_pts'] = ori_info_dict['num_radar_pts'][i]
empty_instance['bbox_3d_isvalid'] = ori_info_dict['valid_flag'][i]
empty_instance = clear_instance_unused_keys(empty_instance)
temp_data_info['instances'].append(empty_instance)
temp_data_info, _ = clear_data_info_unused_keys(temp_data_info)
converted_list.append(temp_data_info)
pkl_name = pkl_path.split('/')[-1]
out_path = osp.join(out_dir, pkl_name)
print(f'Writing to output file: {out_path}.')
print(f'ignore classes: {ignore_class_name}')
converted_data_info = dict(metainfo=METAINFO, data_list=converted_list)
mmcv.dump(converted_data_info, out_path, 'pkl')
return temp_lidar_sweep
def update_kitti_infos(pkl_path, out_dir): def update_kitti_infos(pkl_path, out_dir):
print(f'{pkl_path} will be modified.') print(f'{pkl_path} will be modified.')
if out_dir in pkl_path: if out_dir in pkl_path:
...@@ -479,6 +592,8 @@ def main(): ...@@ -479,6 +592,8 @@ def main():
update_scannet_infos(pkl_path=args.pkl, out_dir=args.out_dir) update_scannet_infos(pkl_path=args.pkl, out_dir=args.out_dir)
elif args.dataset.lower() == 'sunrgbd': elif args.dataset.lower() == 'sunrgbd':
update_sunrgbd_infos(pkl_path=args.pkl, out_dir=args.out_dir) update_sunrgbd_infos(pkl_path=args.pkl, out_dir=args.out_dir)
elif args.dataset.lower() == 'nuscenes':
update_nuscenes_infos(pkl_path=args.pkl, out_dir=args.out_dir)
else: else:
raise NotImplementedError( raise NotImplementedError(
f'Do not support convert {args.dataset} to v2.') f'Do not support convert {args.dataset} to v2.')
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment