indoor_augment.py 8.16 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
import numpy as np

3
from mmdet.datasets.builder import PIPELINES
liyinhao's avatar
liyinhao committed
4
5


6
@PIPELINES.register_module()
7
class IndoorFlipData(object):
liyinhao's avatar
liyinhao committed
8
    """Indoor Flip Data.
9

liyinhao's avatar
liyinhao committed
10
11
12
    Flip point cloud and ground truth boxes.
    The point cloud will ve flipped along the yz plane
    and the xz plane with a certain probability.
13
14

    Args:
liyinhao's avatar
liyinhao committed
15
16
17
        flip_ratio_yz (float): Probability of being flipped along yz plane.
            Default: 0.5.
        flip_ratio_xz (float): Probability of being flipped along xz plane.
liyinhao's avatar
liyinhao committed
18
            Default: 0.5.
19
20
    """

liyinhao's avatar
liyinhao committed
21
22
23
    def __init__(self, flip_ratio_yz=0.5, flip_ratio_xz=0.5):
        self.flip_ratio_yz = flip_ratio_yz
        self.flip_ratio_xz = flip_ratio_xz
24
25

    def __call__(self, results):
26
27
        points = results['points']
        gt_bboxes_3d = results['gt_bboxes_3d']
liyinhao's avatar
liyinhao committed
28
        aligned = True if gt_bboxes_3d.shape[1] == 6 else False
liyinhao's avatar
liyinhao committed
29
        if np.random.random() < self.flip_ratio_yz:
30
            # Flipping along the YZ plane
liyinhao's avatar
liyinhao committed
31
32
            points[:, 0] = -1 * points[:, 0]
            gt_bboxes_3d[:, 0] = -1 * gt_bboxes_3d[:, 0]
liyinhao's avatar
liyinhao committed
33
            if not aligned:
liyinhao's avatar
liyinhao committed
34
                gt_bboxes_3d[:, 6] = np.pi - gt_bboxes_3d[:, 6]
liyinhao's avatar
liyinhao committed
35
            results['flip_yz'] = True
36

liyinhao's avatar
liyinhao committed
37
        if aligned and np.random.random() < self.flip_ratio_xz:
38
            # Flipping along the XZ plane
liyinhao's avatar
liyinhao committed
39
40
            points[:, 1] = -1 * points[:, 1]
            gt_bboxes_3d[:, 1] = -1 * gt_bboxes_3d[:, 1]
liyinhao's avatar
liyinhao committed
41
            results['flip_xz'] = True
42

liyinhao's avatar
liyinhao committed
43
44
        results['points'] = points
        results['gt_bboxes_3d'] = gt_bboxes_3d
45
46
47
48
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
liyinhao's avatar
liyinhao committed
49
50
        repr_str += '(flip_ratio_yz={})'.format(self.flip_ratio_yz)
        repr_str += '(flip_ratio_xz={})'.format(self.flip_ratio_xz)
51
52
53
        return repr_str


liyinhao's avatar
liyinhao committed
54
@PIPELINES.register_module()
liyinhao's avatar
liyinhao committed
55
56
class IndoorPointsColorJitter(object):
    """Indoor Points Color Jitter.
liyinhao's avatar
liyinhao committed
57

liyinhao's avatar
liyinhao committed
58
59
    Randomly change the brightness and color of the point cloud, and
    drop out the points' colors with a certain range and probability.
liyinhao's avatar
liyinhao committed
60
61
62
63
64
65
66
67
68
69

    Args:
        color_mean (List[float]): Mean color of the point cloud.
            Default: [0.5, 0.5, 0.5].
        bright_range (List[float]): Range of brightness.
            Default: [0.8, 1.2].
        color_shift_range (List[float]): Range of color shift.
            Default: [0.95, 1.05].
        jitter_range (List[float]): Range of jittering.
            Default: [-0.025, 0.025].
70
        drop_prob (float): Probability to drop out points' color.
liyinhao's avatar
liyinhao committed
71
72
73
74
75
76
77
78
            Default: 0.3
    """

    def __init__(self,
                 color_mean=[0.5, 0.5, 0.5],
                 bright_range=[0.8, 1.2],
                 color_shift_range=[0.95, 1.05],
                 jitter_range=[-0.025, 0.025],
79
                 drop_prob=0.3):
liyinhao's avatar
liyinhao committed
80
81
82
83
        self.color_mean = color_mean
        self.bright_range = bright_range
        self.color_shift_range = color_shift_range
        self.jitter_range = jitter_range
84
        self.drop_prob = drop_prob
liyinhao's avatar
liyinhao committed
85
86

    def __call__(self, results):
87
        points = results['points']
liyinhao's avatar
liyinhao committed
88
89
        assert points.shape[1] >= 6, \
            f'Expect points have channel >=6, got {points.shape[1]}.'
liyinhao's avatar
liyinhao committed
90
91
92
93
94
95
96
97
98
99
100
101
102
        rgb_color = points[:, 3:6] + self.color_mean
        # brightness change for each channel
        rgb_color *= np.random.uniform(self.bright_range[0],
                                       self.bright_range[1], 3)
        # color shift for each channel
        rgb_color += np.random.uniform(self.color_shift_range[0],
                                       self.color_shift_range[1], 3)
        # jittering on each pixel
        rgb_color += np.expand_dims(
            np.random.uniform(self.jitter_range[0], self.jitter_range[1]), -1)
        rgb_color = np.clip(rgb_color, 0, 1)
        # randomly drop out points' colors
        rgb_color *= np.expand_dims(
103
            np.random.random(points.shape[0]) > self.drop_prob, -1)
liyinhao's avatar
liyinhao committed
104
105
106
107
108
109
110
111
112
113
        points[:, 3:6] = rgb_color - self.color_mean
        results['points'] = points
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(color_mean={})'.format(self.color_mean)
        repr_str += '(bright_range={})'.format(self.bright_range)
        repr_str += '(color_shift_range={})'.format(self.color_shift_range)
        repr_str += '(jitter_range={})'.format(self.jitter_range)
114
        repr_str += '(drop_prob={})'.format(self.drop_prob)
liyinhao's avatar
liyinhao committed
115
116


117
118
119
120
121
122
123
# TODO: merge outdoor indoor transform.
# TODO: try transform noise.
@PIPELINES.register_module()
class IndoorGlobalRotScale(object):
    """Indoor Global Rotate Scale.

    Augment sunrgbd and scannet data with global rotating and scaling.
124
125

    Args:
liyinhao's avatar
liyinhao committed
126
        use_height (bool): Whether to use height.
liyinhao's avatar
liyinhao committed
127
128
129
130
131
            Default: True.
        rot_range (List[float]): Range of rotation.
            Default: None.
        scale_range (List[float]): Range of scale.
            Default: None.
132
133
    """

liyinhao's avatar
liyinhao committed
134
    def __init__(self, use_height=True, rot_range=None, scale_range=None):
liyinhao's avatar
liyinhao committed
135
136
137
138
        self.use_height = use_height
        self.rot_range = rot_range
        self.scale_range = scale_range

liyinhao's avatar
liyinhao committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    def _rotz(self, t):
        """Rotate About Z.

        Rotation about the z-axis.

        Args:
            t (float): Angle of rotation.

        Returns:
            rot_mat (ndarray): Matrix of rotation.
        """
        c = np.cos(t)
        s = np.sin(t)
        rot_mat = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])
        return rot_mat

liyinhao's avatar
liyinhao committed
155
156
157
158
159
160
161
162
163
164
165
166
167
    def _rotate_aligned_boxes(self, input_boxes, rot_mat):
        """Rotate Aligned Boxes.

        Rotate function for the aligned boxes.

        Args:
            input_boxes (ndarray): 3D boxes.
            rot_mat (ndarray): Rotation matrix.

        Returns:
            rotated_boxes (ndarry): 3D boxes after rotation.
        """
        centers, lengths = input_boxes[:, 0:3], input_boxes[:, 3:6]
liyinhao's avatar
liyinhao committed
168
        new_centers = np.dot(centers, rot_mat.T)
liyinhao's avatar
liyinhao committed
169
170
171
172
173

        dx, dy = lengths[:, 0] / 2.0, lengths[:, 1] / 2.0
        new_x = np.zeros((dx.shape[0], 4))
        new_y = np.zeros((dx.shape[0], 4))

liyinhao's avatar
liyinhao committed
174
175
176
177
178
179
180
        for i, corner in enumerate([(-1, -1), (1, -1), (1, 1), (-1, 1)]):
            corners = np.zeros((dx.shape[0], 3))
            corners[:, 0] = corner[0] * dx
            corners[:, 1] = corner[1] * dy
            corners = np.dot(corners, rot_mat.T)
            new_x[:, i] = corners[:, 0]
            new_y[:, i] = corners[:, 1]
liyinhao's avatar
liyinhao committed
181
182
183
184
185
186

        new_dx = 2.0 * np.max(new_x, 1)
        new_dy = 2.0 * np.max(new_y, 1)
        new_lengths = np.stack((new_dx, new_dy, lengths[:, 2]), axis=1)

        return np.concatenate([new_centers, new_lengths], axis=1)
187
188

    def __call__(self, results):
189
190
        points = results['points']
        gt_bboxes_3d = results['gt_bboxes_3d']
liyinhao's avatar
liyinhao committed
191
        aligned = True if gt_bboxes_3d.shape[1] == 6 else False
liyinhao's avatar
liyinhao committed
192

liyinhao's avatar
liyinhao committed
193
        if self.rot_range is not None:
liyinhao's avatar
liyinhao committed
194
            assert len(self.rot_range) == 2, \
liyinhao's avatar
liyinhao committed
195
                f'Expect length of rot range =2, ' \
liyinhao's avatar
liyinhao committed
196
                f'got {len(self.rot_range)}.'
liyinhao's avatar
liyinhao committed
197
            rot_angle = np.random.uniform(self.rot_range[0], self.rot_range[1])
liyinhao's avatar
liyinhao committed
198
199
            rot_mat = self._rotz(rot_angle)
            points[:, :3] = np.dot(points[:, :3], rot_mat.T)
liyinhao's avatar
liyinhao committed
200
            if aligned:
liyinhao's avatar
liyinhao committed
201
202
                gt_bboxes_3d = self._rotate_aligned_boxes(
                    gt_bboxes_3d, rot_mat)
liyinhao's avatar
liyinhao committed
203
            else:
liyinhao's avatar
liyinhao committed
204
                gt_bboxes_3d[:, :3] = np.dot(gt_bboxes_3d[:, :3], rot_mat.T)
liyinhao's avatar
liyinhao committed
205
                gt_bboxes_3d[:, 6] -= rot_angle
liyinhao's avatar
liyinhao committed
206

liyinhao's avatar
liyinhao committed
207
        if self.scale_range is not None:
liyinhao's avatar
liyinhao committed
208
            assert len(self.scale_range) == 2, \
liyinhao's avatar
liyinhao committed
209
                f'Expect length of scale range =2, ' \
liyinhao's avatar
liyinhao committed
210
                f'got {len(self.scale_range)}.'
liyinhao's avatar
liyinhao committed
211
            # Augment point cloud scale
liyinhao's avatar
liyinhao committed
212
213
            scale_ratio = np.random.uniform(self.scale_range[0],
                                            self.scale_range[1])
214

liyinhao's avatar
liyinhao committed
215
216
            points[:, :3] *= scale_ratio
            gt_bboxes_3d[:, :3] *= scale_ratio
liyinhao's avatar
liyinhao committed
217
            gt_bboxes_3d[:, 3:6] *= scale_ratio
liyinhao's avatar
liyinhao committed
218
            if self.use_height:
219
                points[:, -1] *= scale_ratio
liyinhao's avatar
liyinhao committed
220

liyinhao's avatar
liyinhao committed
221
222
        results['points'] = points
        results['gt_bboxes_3d'] = gt_bboxes_3d
223
224
225
226
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
liyinhao's avatar
liyinhao committed
227
        repr_str += '(use_height={})'.format(self.use_height)
liyinhao's avatar
liyinhao committed
228
229
        repr_str += '(rot_range={})'.format(self.rot_range)
        repr_str += '(scale_range={})'.format(self.scale_range)
230
        return repr_str