"...blimp_existential_there_quantifiers_2-v0-loglikelihood" did not exist on "5f48dfc2ab16917ff5b18862c522bbf42a46f053"
indoor_augment.py 8.21 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
import numpy as np

3
from mmdet.datasets.builder import PIPELINES
liyinhao's avatar
liyinhao committed
4
5


6
@PIPELINES.register_module()
7
class IndoorFlipData(object):
liyinhao's avatar
liyinhao committed
8
    """Indoor Flip Data.
9

liyinhao's avatar
liyinhao committed
10
11
12
    Flip point cloud and ground truth boxes.
    The point cloud will ve flipped along the yz plane
    and the xz plane with a certain probability.
13
14

    Args:
liyinhao's avatar
liyinhao committed
15
16
17
        flip_ratio_yz (float): Probability of being flipped along yz plane.
            Default: 0.5.
        flip_ratio_xz (float): Probability of being flipped along xz plane.
liyinhao's avatar
liyinhao committed
18
            Default: 0.5.
19
20
    """

liyinhao's avatar
liyinhao committed
21
22
23
    def __init__(self, flip_ratio_yz=0.5, flip_ratio_xz=0.5):
        self.flip_ratio_yz = flip_ratio_yz
        self.flip_ratio_xz = flip_ratio_xz
24
25

    def __call__(self, results):
26
27
        points = results['points']
        gt_bboxes_3d = results['gt_bboxes_3d']
liyinhao's avatar
liyinhao committed
28
        aligned = True if gt_bboxes_3d.shape[1] == 6 else False
liyinhao's avatar
liyinhao committed
29
        if np.random.random() < self.flip_ratio_yz:
30
            # Flipping along the YZ plane
liyinhao's avatar
liyinhao committed
31
32
            points[:, 0] = -1 * points[:, 0]
            gt_bboxes_3d[:, 0] = -1 * gt_bboxes_3d[:, 0]
liyinhao's avatar
liyinhao committed
33
            if not aligned:
liyinhao's avatar
liyinhao committed
34
                gt_bboxes_3d[:, 6] = np.pi - gt_bboxes_3d[:, 6]
liyinhao's avatar
liyinhao committed
35

liyinhao's avatar
liyinhao committed
36
            results['flip_yz'] = True
liyinhao's avatar
liyinhao committed
37
            results['gt_boxes'] = gt_bboxes_3d
38

liyinhao's avatar
liyinhao committed
39
        if aligned and np.random.random() < self.flip_ratio_xz:
40
            # Flipping along the XZ plane
liyinhao's avatar
liyinhao committed
41
42
            points[:, 1] = -1 * points[:, 1]
            gt_bboxes_3d[:, 1] = -1 * gt_bboxes_3d[:, 1]
liyinhao's avatar
liyinhao committed
43
            results['flip_xz'] = True
liyinhao's avatar
liyinhao committed
44
45
            results['gt_bboxes_3d'] = gt_bboxes_3d
        results['points'] = points
46
47
48
49
50

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
liyinhao's avatar
liyinhao committed
51
52
        repr_str += '(flip_ratio_yz={})'.format(self.flip_ratio_yz)
        repr_str += '(flip_ratio_xz={})'.format(self.flip_ratio_xz)
53
54
55
        return repr_str


liyinhao's avatar
liyinhao committed
56
@PIPELINES.register_module()
liyinhao's avatar
liyinhao committed
57
58
class IndoorPointsColorJitter(object):
    """Indoor Points Color Jitter.
liyinhao's avatar
liyinhao committed
59

liyinhao's avatar
liyinhao committed
60
61
    Randomly change the brightness and color of the point cloud, and
    drop out the points' colors with a certain range and probability.
liyinhao's avatar
liyinhao committed
62
63
64
65
66
67
68
69
70
71

    Args:
        color_mean (List[float]): Mean color of the point cloud.
            Default: [0.5, 0.5, 0.5].
        bright_range (List[float]): Range of brightness.
            Default: [0.8, 1.2].
        color_shift_range (List[float]): Range of color shift.
            Default: [0.95, 1.05].
        jitter_range (List[float]): Range of jittering.
            Default: [-0.025, 0.025].
72
        drop_prob (float): Probability to drop out points' color.
liyinhao's avatar
liyinhao committed
73
74
75
76
77
78
79
80
            Default: 0.3
    """

    def __init__(self,
                 color_mean=[0.5, 0.5, 0.5],
                 bright_range=[0.8, 1.2],
                 color_shift_range=[0.95, 1.05],
                 jitter_range=[-0.025, 0.025],
81
                 drop_prob=0.3):
liyinhao's avatar
liyinhao committed
82
83
84
85
        self.color_mean = color_mean
        self.bright_range = bright_range
        self.color_shift_range = color_shift_range
        self.jitter_range = jitter_range
86
        self.drop_prob = drop_prob
liyinhao's avatar
liyinhao committed
87
88

    def __call__(self, results):
89
        points = results['points']
liyinhao's avatar
liyinhao committed
90
91
        assert points.shape[1] >= 6, \
            f'Expect points have channel >=6, got {points.shape[1]}.'
liyinhao's avatar
liyinhao committed
92
93
94
95
96
97
98
99
100
101
102
103
104
        rgb_color = points[:, 3:6] + self.color_mean
        # brightness change for each channel
        rgb_color *= np.random.uniform(self.bright_range[0],
                                       self.bright_range[1], 3)
        # color shift for each channel
        rgb_color += np.random.uniform(self.color_shift_range[0],
                                       self.color_shift_range[1], 3)
        # jittering on each pixel
        rgb_color += np.expand_dims(
            np.random.uniform(self.jitter_range[0], self.jitter_range[1]), -1)
        rgb_color = np.clip(rgb_color, 0, 1)
        # randomly drop out points' colors
        rgb_color *= np.expand_dims(
105
            np.random.random(points.shape[0]) > self.drop_prob, -1)
liyinhao's avatar
liyinhao committed
106
107
108
109
110
111
112
113
114
115
        points[:, 3:6] = rgb_color - self.color_mean
        results['points'] = points
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(color_mean={})'.format(self.color_mean)
        repr_str += '(bright_range={})'.format(self.bright_range)
        repr_str += '(color_shift_range={})'.format(self.color_shift_range)
        repr_str += '(jitter_range={})'.format(self.jitter_range)
116
        repr_str += '(drop_prob={})'.format(self.drop_prob)
liyinhao's avatar
liyinhao committed
117
118


119
120
121
122
123
124
125
# TODO: merge outdoor indoor transform.
# TODO: try transform noise.
@PIPELINES.register_module()
class IndoorGlobalRotScale(object):
    """Indoor Global Rotate Scale.

    Augment sunrgbd and scannet data with global rotating and scaling.
126
127

    Args:
liyinhao's avatar
liyinhao committed
128
        use_height (bool): Whether to use height.
liyinhao's avatar
liyinhao committed
129
130
131
132
133
            Default: True.
        rot_range (List[float]): Range of rotation.
            Default: None.
        scale_range (List[float]): Range of scale.
            Default: None.
134
135
    """

liyinhao's avatar
liyinhao committed
136
    def __init__(self, use_height=True, rot_range=None, scale_range=None):
liyinhao's avatar
liyinhao committed
137
138
139
140
        self.use_height = use_height
        self.rot_range = rot_range
        self.scale_range = scale_range

liyinhao's avatar
liyinhao committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def _rotz(self, t):
        """Rotate About Z.

        Rotation about the z-axis.

        Args:
            t (float): Angle of rotation.

        Returns:
            rot_mat (ndarray): Matrix of rotation.
        """
        c = np.cos(t)
        s = np.sin(t)
        rot_mat = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])
        return rot_mat

liyinhao's avatar
liyinhao committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    def _rotate_aligned_boxes(self, input_boxes, rot_mat):
        """Rotate Aligned Boxes.

        Rotate function for the aligned boxes.

        Args:
            input_boxes (ndarray): 3D boxes.
            rot_mat (ndarray): Rotation matrix.

        Returns:
            rotated_boxes (ndarry): 3D boxes after rotation.
        """
        centers, lengths = input_boxes[:, 0:3], input_boxes[:, 3:6]
        new_centers = np.dot(centers, np.transpose(rot_mat))

        dx, dy = lengths[:, 0] / 2.0, lengths[:, 1] / 2.0
        new_x = np.zeros((dx.shape[0], 4))
        new_y = np.zeros((dx.shape[0], 4))

        for i, crnr in enumerate([(-1, -1), (1, -1), (1, 1), (-1, 1)]):
            crnrs = np.zeros((dx.shape[0], 3))
            crnrs[:, 0] = crnr[0] * dx
            crnrs[:, 1] = crnr[1] * dy
            crnrs = np.dot(crnrs, np.transpose(rot_mat))
            new_x[:, i] = crnrs[:, 0]
            new_y[:, i] = crnrs[:, 1]

        new_dx = 2.0 * np.max(new_x, 1)
        new_dy = 2.0 * np.max(new_y, 1)
        new_lengths = np.stack((new_dx, new_dy, lengths[:, 2]), axis=1)

        return np.concatenate([new_centers, new_lengths], axis=1)
189
190

    def __call__(self, results):
191
192
        points = results['points']
        gt_bboxes_3d = results['gt_bboxes_3d']
liyinhao's avatar
liyinhao committed
193
        aligned = True if gt_bboxes_3d.shape[1] == 6 else False
liyinhao's avatar
liyinhao committed
194

liyinhao's avatar
liyinhao committed
195
        if self.rot_range is not None:
liyinhao's avatar
liyinhao committed
196
197
198
            assert len(self.rot_range) == 2, \
                f'Except length of rot range =2, ' \
                f'got {len(self.rot_range)}.'
liyinhao's avatar
liyinhao committed
199
            rot_angle = np.random.uniform(self.rot_range[0], self.rot_range[1])
liyinhao's avatar
liyinhao committed
200
201
            rot_mat = self._rotz(rot_angle)
            points[:, :3] = np.dot(points[:, :3], rot_mat.T)
liyinhao's avatar
liyinhao committed
202
            if aligned:
liyinhao's avatar
liyinhao committed
203
204
                gt_bboxes_3d = self._rotate_aligned_boxes(
                    gt_bboxes_3d, rot_mat)
liyinhao's avatar
liyinhao committed
205
            else:
liyinhao's avatar
liyinhao committed
206
                gt_bboxes_3d[:, :3] = np.dot(gt_bboxes_3d[:, :3], rot_mat.T)
liyinhao's avatar
liyinhao committed
207
                gt_bboxes_3d[:, 6] -= rot_angle
liyinhao's avatar
liyinhao committed
208

liyinhao's avatar
liyinhao committed
209
        if self.scale_range is not None:
liyinhao's avatar
liyinhao committed
210
211
212
            assert len(self.scale_range) == 2, \
                f'Except length of scale range =2, ' \
                f'got {len(self.scale_range)}.'
liyinhao's avatar
liyinhao committed
213
            # Augment point cloud scale
liyinhao's avatar
liyinhao committed
214
215
            scale_ratio = np.random.uniform(self.scale_range[0],
                                            self.scale_range[1])
216

liyinhao's avatar
liyinhao committed
217
218
            points[:, :3] *= scale_ratio
            gt_bboxes_3d[:, :3] *= scale_ratio
liyinhao's avatar
liyinhao committed
219
            gt_bboxes_3d[:, 3:6] *= scale_ratio
liyinhao's avatar
liyinhao committed
220
            if self.use_height:
221
                points[:, -1] *= scale_ratio
liyinhao's avatar
liyinhao committed
222

liyinhao's avatar
liyinhao committed
223
224
        results['points'] = points
        results['gt_bboxes_3d'] = gt_bboxes_3d
225
226
227
228
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
liyinhao's avatar
liyinhao committed
229
        repr_str += '(use_height={})'.format(self.use_height)
liyinhao's avatar
liyinhao committed
230
231
        repr_str += '(rot_range={})'.format(self.rot_range)
        repr_str += '(scale_range={})'.format(self.scale_range)
232
        return repr_str