indoor_augment.py 6.37 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
import numpy as np

from mmdet.datasets.registry import PIPELINES


6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def _rotz(t):
    """Rotate About Z.

    Rotation about the z-axis.

    Args:
        t (float): Angle of rotation.

    Returns:
        rot_mat (ndarray): Matrix of rotation.
    """
    c = np.cos(t)
    s = np.sin(t)
    rot_mat = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])
    return rot_mat


@PIPELINES.register_module()
24
25
class IndoorFlipData(object):
    """Indoor Flip Data
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    Flip point_cloud and groundtruth boxes.

    Args:
        seed (int): Numpy random seed.
    """

    def __init__(self, seed=None):
        if seed is not None:
            np.random.seed(seed)

    def __call__(self, results):
        point_cloud = results.get('point_cloud', None)
        gt_boxes = results.get('gt_boxes', None)
        name = 'scannet' if gt_boxes.shape[1] == 6 else 'sunrgbd'
        if np.random.random() > 0.5:
            # Flipping along the YZ plane
            point_cloud[:, 0] = -1 * point_cloud[:, 0]
            gt_boxes[:, 0] = -1 * gt_boxes[:, 0]
            if name == 'sunrgbd':
                gt_boxes[:, 6] = np.pi - gt_boxes[:, 6]
            results['gt_boxes'] = gt_boxes

        if name == 'scannet' and np.random.random() > 0.5:
            # Flipping along the XZ plane
            point_cloud[:, 1] = -1 * point_cloud[:, 1]
            gt_boxes[:, 1] = -1 * gt_boxes[:, 1]
            results['gt_boxes'] = gt_boxes
        results['point_cloud'] = point_cloud

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


# TODO: merge outdoor indoor transform.
# TODO: try transform noise.
@PIPELINES.register_module()
class IndoorGlobalRotScale(object):
    """Indoor Global Rotate Scale.

    Augment sunrgbd and scannet data with global rotating and scaling.
70
71

    Args:
liyinhao's avatar
liyinhao committed
72
73
74
75
76
77
78
        seed (int): Numpy random seed.
        use_rotate (bool): Whether to use rotate.
        use_color (bool): Whether to use color.
        use_height (bool): Whether to use height.
        rot_range (float): Range of rotation.
        scale_range (float): Range of scale.
        (List[float]): Mean color of the point cloud.
79
80
    """

liyinhao's avatar
liyinhao committed
81
82
83
84
85
86
87
88
    def __init__(self,
                 seed=None,
                 use_rotate=True,
                 use_color=False,
                 use_scale=True,
                 use_height=True,
                 rot_range=1 / 3,
                 scale_range=0.3,
89
                 color_mean=[0.5, 0.5, 0.5]):
liyinhao's avatar
liyinhao committed
90
91
92
93
94
95
96
97
98
        if seed is not None:
            np.random.seed(seed)

        self.use_rotate = use_rotate
        self.use_color = use_color
        self.use_scale = use_scale
        self.use_height = use_height
        self.rot_range = rot_range
        self.scale_range = scale_range
99
        self.color_mean = color_mean
liyinhao's avatar
liyinhao committed
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    def _rotate_aligned_boxes(self, input_boxes, rot_mat):
        """Rotate Aligned Boxes.

        Rotate function for the aligned boxes.

        Args:
            input_boxes (ndarray): 3D boxes.
            rot_mat (ndarray): Rotation matrix.

        Returns:
            rotated_boxes (ndarry): 3D boxes after rotation.
        """
        centers, lengths = input_boxes[:, 0:3], input_boxes[:, 3:6]
        new_centers = np.dot(centers, np.transpose(rot_mat))

        dx, dy = lengths[:, 0] / 2.0, lengths[:, 1] / 2.0
        new_x = np.zeros((dx.shape[0], 4))
        new_y = np.zeros((dx.shape[0], 4))

        for i, crnr in enumerate([(-1, -1), (1, -1), (1, 1), (-1, 1)]):
            crnrs = np.zeros((dx.shape[0], 3))
            crnrs[:, 0] = crnr[0] * dx
            crnrs[:, 1] = crnr[1] * dy
            crnrs = np.dot(crnrs, np.transpose(rot_mat))
            new_x[:, i] = crnrs[:, 0]
            new_y[:, i] = crnrs[:, 1]

        new_dx = 2.0 * np.max(new_x, 1)
        new_dy = 2.0 * np.max(new_y, 1)
        new_lengths = np.stack((new_dx, new_dy, lengths[:, 2]), axis=1)

        return np.concatenate([new_centers, new_lengths], axis=1)
133
134

    def __call__(self, results):
liyinhao's avatar
liyinhao committed
135
        point_cloud = results.get('point_cloud', None)
136
        gt_boxes = results.get('gt_boxes', None)
liyinhao's avatar
liyinhao committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        name = 'scannet' if gt_boxes.shape[1] == 6 else 'sunrgbd'

        if self.use_rotate:
            rot_angle = (np.random.random() * self.rot_range * np.pi
                         ) - np.pi * self.rot_range / 2  # -30 ~ +30 degree
            rot_mat = _rotz(rot_angle)
            point_cloud[:, 0:3] = np.dot(point_cloud[:, 0:3],
                                         np.transpose(rot_mat))

            if name == 'scannet':
                gt_boxes = self._rotate_aligned_boxes(gt_boxes, rot_mat)
            else:
                gt_boxes[:, 0:3] = np.dot(gt_boxes[:, 0:3],
                                          np.transpose(rot_mat))
                gt_boxes[:, 6] -= rot_angle

        # Augment RGB color
        if self.use_color:
155
            rgb_color = point_cloud[:, 3:6] + self.color_mean
liyinhao's avatar
liyinhao committed
156
157
158
159
160
161
162
163
164
165
166
            rgb_color *= (1 + 0.4 * np.random.random(3) - 0.2
                          )  # brightness change for each channel
            rgb_color += (0.1 * np.random.random(3) - 0.05
                          )  # color shift for each channel
            rgb_color += np.expand_dims(
                (0.05 * np.random.random(point_cloud.shape[0]) - 0.025),
                -1)  # jittering on each pixel
            rgb_color = np.clip(rgb_color, 0, 1)
            # randomly drop out 30% of the points' colors
            rgb_color *= np.expand_dims(
                np.random.random(point_cloud.shape[0]) > 0.3, -1)
167
            point_cloud[:, 3:6] = rgb_color - self.color_mean
liyinhao's avatar
liyinhao committed
168
169
170
171
172
173
174
175
176
177
178

        if self.use_scale:
            # Augment point cloud scale: 0.85x-1.15x
            scale_ratio = np.random.random(
            ) * self.scale_range + 1 - self.scale_range / 2
            scale_ratio = np.expand_dims(np.tile(scale_ratio, 3), 0)
            point_cloud[:, 0:3] *= scale_ratio
            gt_boxes[:, 0:3] *= scale_ratio
            gt_boxes[:, 3:6] *= scale_ratio
            if self.use_height:
                point_cloud[:, -1] *= scale_ratio[0, 0]
liyinhao's avatar
liyinhao committed
179

liyinhao's avatar
liyinhao committed
180
        results['point_cloud'] = point_cloud
181
182
183
184
185
        results['gt_boxes'] = gt_boxes
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
liyinhao's avatar
liyinhao committed
186
187
188
189
        repr_str += '(use_rotate={})'.format(self.use_rotate)
        repr_str += '(use_color={})'.format(self.use_color)
        repr_str += '(use_scale={})'.format(self.use_scale)
        repr_str += '(use_height={})'.format(self.use_height)
190
        return repr_str