indoor_augment.py 7.38 KB
Newer Older
liyinhao's avatar
liyinhao committed
1
2
3
4
5
import numpy as np

from mmdet.datasets.registry import PIPELINES


6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
def _rotz(t):
    """Rotate About Z.

    Rotation about the z-axis.

    Args:
        t (float): Angle of rotation.

    Returns:
        rot_mat (ndarray): Matrix of rotation.
    """
    c = np.cos(t)
    s = np.sin(t)
    rot_mat = np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]])
    return rot_mat


@PIPELINES.register_module()
24
class IndoorFlipData(object):
liyinhao's avatar
liyinhao committed
25
    """Indoor Flip Data.
26

27
28
29
    Flip point_cloud and groundtruth boxes.

    Args:
liyinhao's avatar
liyinhao committed
30
31
        flip_ratio (float): Probability of being flipped.
            Default: 0.5.
32
33
    """

liyinhao's avatar
liyinhao committed
34
35
    def __init__(self, flip_ratio=0.5):
        self.flip_ratio = flip_ratio
36
37

    def __call__(self, results):
liyinhao's avatar
liyinhao committed
38
39
40
        points = results.get('points', None)
        gt_bboxes_3d = results.get('gt_bboxes_3d', None)
        name = 'scannet' if gt_bboxes_3d.shape[1] == 6 else 'sunrgbd'
liyinhao's avatar
liyinhao committed
41
        if np.random.random() > self.flip_ratio:
42
            # Flipping along the YZ plane
liyinhao's avatar
liyinhao committed
43
44
            points[:, 0] = -1 * points[:, 0]
            gt_bboxes_3d[:, 0] = -1 * gt_bboxes_3d[:, 0]
45
            if name == 'sunrgbd':
liyinhao's avatar
liyinhao committed
46
47
                gt_bboxes_3d[:, 6] = np.pi - gt_bboxes_3d[:, 6]
            results['gt_boxes'] = gt_bboxes_3d
48
49
50

        if name == 'scannet' and np.random.random() > 0.5:
            # Flipping along the XZ plane
liyinhao's avatar
liyinhao committed
51
52
53
54
            points[:, 1] = -1 * points[:, 1]
            gt_bboxes_3d[:, 1] = -1 * gt_bboxes_3d[:, 1]
            results['gt_bboxes_3d'] = gt_bboxes_3d
        results['points'] = points
55
56
57
58
59
60
61
62

        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        return repr_str


liyinhao's avatar
liyinhao committed
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@PIPELINES.register_module()
class IndoorAugmentColor(object):
    """Indoor Augment Color.

    Augment the color of points.

    Args:
        color_mean (List[float]): Mean color of the point cloud.
            Default: [0.5, 0.5, 0.5].
        bright_range (List[float]): Range of brightness.
            Default: [0.8, 1.2].
        color_shift_range (List[float]): Range of color shift.
            Default: [0.95, 1.05].
        jitter_range (List[float]): Range of jittering.
            Default: [-0.025, 0.025].
        prob_drop (float): Probability to drop out points' color.
            Default: 0.3
    """

    def __init__(self,
                 color_mean=[0.5, 0.5, 0.5],
                 bright_range=[0.8, 1.2],
                 color_shift_range=[0.95, 1.05],
                 jitter_range=[-0.025, 0.025],
                 prob_drop=0.3):
        self.color_mean = color_mean
        self.bright_range = bright_range
        self.color_shift_range = color_shift_range
        self.jitter_range = jitter_range
        self.prob_drop = prob_drop

    def __call__(self, results):
        points = results.get('points', None)
        assert points.shape[1] >= 6
        rgb_color = points[:, 3:6] + self.color_mean
        # brightness change for each channel
        rgb_color *= np.random.uniform(self.bright_range[0],
                                       self.bright_range[1], 3)
        # color shift for each channel
        rgb_color += np.random.uniform(self.color_shift_range[0],
                                       self.color_shift_range[1], 3)
        # jittering on each pixel
        rgb_color += np.expand_dims(
            np.random.uniform(self.jitter_range[0], self.jitter_range[1]), -1)
        rgb_color = np.clip(rgb_color, 0, 1)
        # randomly drop out points' colors
        rgb_color *= np.expand_dims(
            np.random.random(points.shape[0]) > self.prob_drop, -1)
        points[:, 3:6] = rgb_color - self.color_mean
        results['points'] = points
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
        repr_str += '(color_mean={})'.format(self.color_mean)
        repr_str += '(bright_range={})'.format(self.bright_range)
        repr_str += '(color_shift_range={})'.format(self.color_shift_range)
        repr_str += '(jitter_range={})'.format(self.jitter_range)
        repr_str += '(prob_drop={})'.format(self.prob_drop)


124
125
126
127
128
129
130
# TODO: merge outdoor indoor transform.
# TODO: try transform noise.
@PIPELINES.register_module()
class IndoorGlobalRotScale(object):
    """Indoor Global Rotate Scale.

    Augment sunrgbd and scannet data with global rotating and scaling.
131
132

    Args:
liyinhao's avatar
liyinhao committed
133
        use_height (bool): Whether to use height.
liyinhao's avatar
liyinhao committed
134
135
136
137
138
            Default: True.
        rot_range (List[float]): Range of rotation.
            Default: None.
        scale_range (List[float]): Range of scale.
            Default: None.
139
140
    """

liyinhao's avatar
liyinhao committed
141
    def __init__(self, use_height=True, rot_range=None, scale_range=None):
liyinhao's avatar
liyinhao committed
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        self.use_height = use_height
        self.rot_range = rot_range
        self.scale_range = scale_range

    def _rotate_aligned_boxes(self, input_boxes, rot_mat):
        """Rotate Aligned Boxes.

        Rotate function for the aligned boxes.

        Args:
            input_boxes (ndarray): 3D boxes.
            rot_mat (ndarray): Rotation matrix.

        Returns:
            rotated_boxes (ndarry): 3D boxes after rotation.
        """
        centers, lengths = input_boxes[:, 0:3], input_boxes[:, 3:6]
        new_centers = np.dot(centers, np.transpose(rot_mat))

        dx, dy = lengths[:, 0] / 2.0, lengths[:, 1] / 2.0
        new_x = np.zeros((dx.shape[0], 4))
        new_y = np.zeros((dx.shape[0], 4))

        for i, crnr in enumerate([(-1, -1), (1, -1), (1, 1), (-1, 1)]):
            crnrs = np.zeros((dx.shape[0], 3))
            crnrs[:, 0] = crnr[0] * dx
            crnrs[:, 1] = crnr[1] * dy
            crnrs = np.dot(crnrs, np.transpose(rot_mat))
            new_x[:, i] = crnrs[:, 0]
            new_y[:, i] = crnrs[:, 1]

        new_dx = 2.0 * np.max(new_x, 1)
        new_dy = 2.0 * np.max(new_y, 1)
        new_lengths = np.stack((new_dx, new_dy, lengths[:, 2]), axis=1)

        return np.concatenate([new_centers, new_lengths], axis=1)
178
179

    def __call__(self, results):
liyinhao's avatar
liyinhao committed
180
181
182
        points = results.get('points', None)
        gt_bboxes_3d = results.get('gt_bboxes_3d', None)
        name = 'scannet' if gt_bboxes_3d.shape[1] == 6 else 'sunrgbd'
liyinhao's avatar
liyinhao committed
183

liyinhao's avatar
liyinhao committed
184
185
        if self.rot_range is not None:
            rot_angle = np.random.uniform(self.rot_range[0], self.rot_range[1])
liyinhao's avatar
liyinhao committed
186
            rot_mat = _rotz(rot_angle)
liyinhao's avatar
liyinhao committed
187
            points[:, 0:3] = np.dot(points[:, 0:3], rot_mat.T)
liyinhao's avatar
liyinhao committed
188
189

            if name == 'scannet':
liyinhao's avatar
liyinhao committed
190
191
                gt_bboxes_3d = self._rotate_aligned_boxes(
                    gt_bboxes_3d, rot_mat)
liyinhao's avatar
liyinhao committed
192
            else:
liyinhao's avatar
liyinhao committed
193
194
195
                gt_bboxes_3d[:, 0:3] = np.dot(gt_bboxes_3d[:, 0:3],
                                              np.transpose(rot_mat))
                gt_bboxes_3d[:, 6] -= rot_angle
liyinhao's avatar
liyinhao committed
196

liyinhao's avatar
liyinhao committed
197
        if self.scale_range is not None:
liyinhao's avatar
liyinhao committed
198
            # Augment point cloud scale
liyinhao's avatar
liyinhao committed
199
200
            scale_ratio = np.random.uniform(self.scale_range[0],
                                            self.scale_range[1])
liyinhao's avatar
liyinhao committed
201
202
203
204
            scale_ratio = np.tile(scale_ratio, 3)[None, ...]
            points[:, 0:3] *= scale_ratio
            gt_bboxes_3d[:, 0:3] *= scale_ratio
            gt_bboxes_3d[:, 3:6] *= scale_ratio
liyinhao's avatar
liyinhao committed
205
            if self.use_height:
liyinhao's avatar
liyinhao committed
206
                points[:, -1] *= scale_ratio[0, 0]
liyinhao's avatar
liyinhao committed
207

liyinhao's avatar
liyinhao committed
208
209
        results['points'] = points
        results['gt_bboxes_3d'] = gt_bboxes_3d
210
211
212
213
        return results

    def __repr__(self):
        repr_str = self.__class__.__name__
liyinhao's avatar
liyinhao committed
214
        repr_str += '(use_height={})'.format(self.use_height)
liyinhao's avatar
liyinhao committed
215
216
        repr_str += '(rot_range={})'.format(self.rot_range)
        repr_str += '(scale_range={})'.format(self.scale_range)
217
        return repr_str