transformer.py 39.2 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Transformer."""
import math
import torch
19
import torch.nn.functional as F
20

21
from megatron import get_timers, get_args, print_rank_last, print_rank_0
22
from megatron import mpu
23
from .module import MegatronModule
24
from megatron.model.enums import AttnMaskType, ModelType, LayerType, AttnType
25
from megatron.model import LayerNorm
26
27
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
28
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
29

30
31
_MATMUL_INPUT = None

32
33
34
35
36
37
38
39
40
41
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
42
    Transformer takes input of size [s, b, h] and returns a
43
44
45
46
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

47
48
49
50
51
class DropPath(MegatronModule):
    """Drop paths (Stochastic Depth) per sample 
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
52
    def __init__(self, drop_prob=0.):
53
54
55
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
56
    def forward(self, hidden_state):
57
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
58
            return hidden_state
59
60
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
Vijay Korthikanti's avatar
Vijay Korthikanti committed
61
        shape = (hidden_state.shape[0],) + (1,) * (hidden_state.ndim - 1)
62
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
64
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
65
        output = hidden_state.div(keep_prob) * random_tensor
66
67
68
        return output


69
70
71
72
73
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
74
    state back into h hidden dimension.
75
76
    """

77
    def __init__(self, init_method, output_layer_init_method):
78
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
79
        args = get_args()
80
81
82

        # Project to 4h.
        self.dense_h_to_4h = mpu.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
83
            args.hidden_size,
84
            args.ffn_hidden_size,
85
            gather_output=False,
86
87
            init_method=init_method,
            skip_bias_add=True)
88

89
90
91
92
93
94
        self.bias_gelu_fusion = args.bias_gelu_fusion
        self.activation_func = F.gelu
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
95
96
97

        # Project back to h.
        self.dense_4h_to_h = mpu.RowParallelLinear(
98
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
99
            args.hidden_size,
100
            input_is_parallel=True,
101
102
            init_method=output_layer_init_method,
            skip_bias_add=True)
103

104
105
    def forward(self, hidden_states):

106
107
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
108

109
110
111
112
113
114
115
116
117
118
        if self.bias_gelu_fusion:
             intermediate_parallel = \
                     bias_gelu_impl(intermediate_parallel, bias_parallel)
        else:
            intermediate_parallel = \
                self.activation_func(intermediate_parallel + bias_parallel)

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
119

rprenger's avatar
rprenger committed
120
121
122
123
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
124
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
125
126
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
127
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
128
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
129
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
130
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
131

rprenger's avatar
rprenger committed
132
133
134
135
136
137
    def forward(self, hidden_states):
        # hidden_states: [b, s, h]
        b = hidden_states.size(0)
        s = hidden_states.size(1)
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
138
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
139
        max_prob, max_ind = torch.max(route, dim=2)
140
141
        max_prob = torch.unsqueeze(max_prob, 2) # [b s 1]

rprenger's avatar
rprenger committed
142
143
        # TODO (rprenger) TODO this could be made easier to read
        # Converting [b, s, h] to [b*s, h].
144
145
146
147
        # Each vector could be routed differently
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [b*s h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [b*s 1]
        max_ind = max_ind.view(-1) # [b*s]
rprenger's avatar
rprenger committed
148
149
150

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
151
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
152
        
rprenger's avatar
rprenger committed
153
        for expert_num, expert in enumerate(self.experts):
154
155
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
156
157
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
158
159
160
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
161
162
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
163
164
        output_total = output_total.view(b, s, h)
        output_bias_total = output_bias_total.view(b, s, h)
rprenger's avatar
rprenger committed
165
166

        return output_total, output_bias_total
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

class CoreAttention(MegatronModule):
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
        self.model_parallel_memory_opt = args.model_parallel_memory_opt

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
        world_size = mpu.get_tensor_model_parallel_world_size()
        self.hidden_size_per_partition = mpu.divide(projection_size,
                                                    world_size)
        self.hidden_size_per_attention_head = mpu.divide(
            projection_size, args.num_attention_heads)
193
194
        self.num_attention_heads_per_partition = mpu.divide(
            args.num_attention_heads, world_size)
195

196
197
198
199
200
201
202
203
204
        global _MATMUL_INPUT
        if _MATMUL_INPUT is None:
            _MATMUL_INPUT = torch.empty(
                args.micro_batch_size * self.num_attention_heads_per_partition,
                args.seq_length,
                args.seq_length,
                dtype=torch.bfloat16,
                device=torch.cuda.current_device())
        
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
        
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

        # preallocting result tensor: [b * np, sq, sk]
245
246
247
248
249
250
251
252
253
        #matmul_result = torch.empty(
        #    output_size[0]*output_size[1],
        #    output_size[2],
        #    output_size[3],
        #    dtype=query_layer.dtype,
        #    device=torch.cuda.current_device())

        global _MATMUL_INPUT
        matmul_input = _MATMUL_INPUT
254
255
256

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
257
            matmul_input,
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.

        if not self.model_parallel_memory_opt:
            with mpu.get_cuda_rng_tracker().fork():
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


320
class ParallelAttention(MegatronModule):
321
322
323
324
325
    """Parallel self-attention layer abstract class.

    Self-attention layer takes input with size [b, s, h]
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
326

327
    def __init__(self, init_method,
328
329
330
331
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
332
        args = get_args()
333
        self.layer_number = max(1, layer_number)
334
335
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
336
        self.params_dtype = args.params_dtype
337
338
        self.checkpoint_attention = args.checkpoint_attention
        #assert args.activations_checkpoint_method is None
339
340

        projection_size = args.kv_channels * args.num_attention_heads
341
342

        # Per attention head and per partition values.
343
        world_size = mpu.get_tensor_model_parallel_world_size()
344
        self.hidden_size_per_attention_head = mpu.divide(
345
            projection_size, args.num_attention_heads)
346
        self.num_attention_heads_per_partition = mpu.divide(
Mohammad's avatar
Mohammad committed
347
            args.num_attention_heads, world_size)
348
349

        # Strided linear layer.
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        if attention_type == AttnType.self_attn:
            self.query_key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                3 * projection_size,
                gather_output=False,
                init_method=init_method)
        else:
            assert attention_type == AttnType.cross_attn
            self.query = mpu.ColumnParallelLinear(
                args.hidden_size,
                projection_size,
                gather_output=False,
                init_method=init_method)

            self.key_value = mpu.ColumnParallelLinear(
                args.hidden_size,
                2 * projection_size,
                gather_output=False,
                init_method=init_method)
369

370
371
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
372
373
374

        # Output.
        self.dense = mpu.RowParallelLinear(
375
            projection_size,
Mohammad's avatar
Mohammad committed
376
            args.hidden_size,
377
            input_is_parallel=True,
378
379
            init_method=output_layer_init_method,
            skip_bias_add=True)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

        hidden_states = mpu.checkpoint(
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask)

        return hidden_states
398
399
400
401
402
403
404
405
406
407
408

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
409
                encoder_output=None, inference_params=None):
410
        # hidden_states: [sq, b, h]
411

412
413
414
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
mshoeybi's avatar
mshoeybi committed
415
        if inference_params:
416
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
417
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
418
                inf_max_batch_size = inference_params.max_batch_size
419
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
420
                    inf_max_seq_len, inf_max_batch_size)
421
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
422
                    inf_max_seq_len, inf_max_batch_size)
423
424
425
426
427
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
428

429
430
431
        # =====================
        # Query, Key, and Value
        # =====================
432

433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_x_layer, 3)
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
             value_layer) = mpu.split_tensor_along_last_dim(mixed_kv_layer, 2)

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
468

mshoeybi's avatar
mshoeybi committed
469
470
471
        # ==================================
        # Adjust key and value for inference
        # ==================================
472

mshoeybi's avatar
mshoeybi committed
473
        if inference_params:
mshoeybi's avatar
mshoeybi committed
474
475
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
476
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
477
478
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
479
            assert sequence_end <= inference_key_memory.size(0)
480
            # Copy key and values.
481
482
483
484
485
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
486
                :sequence_end, batch_start:batch_end, ...]
487
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
488
                :sequence_end, batch_start:batch_end, ...]
489

490
491
492
        # ==================================
        # core attention computation
        # ==================================
493

494
495
496
        if self.checkpoint_attention:
            context_layer = self._checkpointed_attention_forward(
                query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
497
        else:
498
499
            context_layer = self.core_attention(
                query_layer, key_layer, value_layer, attention_mask)
500
501

        # =================
502
        # Output. [sq, b, h]
503
504
505
        # =================

        output, bias = self.dense(context_layer)
506

507
508
509
        return output, bias


510
def bias_dropout_add(x, bias, residual, prob, training):
511
512
513
514
515
516
517
518
519
520
521
522
523
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
    out = torch.nn.functional.dropout(x + bias, p=prob, training=training)
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
524
525
526
527
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
528
529
530
531
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
532
533
534
535
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
536
    return bias_dropout_add(x, bias, residual, prob, False)
537
538
539
540
541


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

542
    Transformer layer takes input with size [b, s, h] and returns an
543
544
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
545

546
547
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
548
549
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
550
        args = get_args()
551
552

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
553
        self.layer_number = layer_number
554
        self.layer_type = layer_type
555
556

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
557
            = args.apply_residual_connection_post_layernorm
558

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
559
560
561
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

562
563
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
564
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
565
            eps=args.layernorm_epsilon,
566
567
            no_persist_layer_norm=args.no_persist_layer_norm,
            sequence_parallel=args.model_parallel_memory_opt)
568
569

        # Self attention.
570
571
572
573
574
575
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
576
577
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
578
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
579

580
        # Layernorm on the attention output
581
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
582
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
583
            eps=args.layernorm_epsilon,
584
585
            no_persist_layer_norm=args.no_persist_layer_norm,
            sequence_parallel=args.model_parallel_memory_opt)
586

587
588
589
590
591
592
593
594
595
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
596
                eps=args.layernorm_epsilon,
597
598
                no_persist_layer_norm=args.no_persist_layer_norm,
                sequence_parallel=args.model_parallel_memory_opt)
599

600
        # MLP
rprenger's avatar
rprenger committed
601
602
603
604
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
605

606
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
607
608
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
609
610
        # hidden_states: [b, s, h]

611
        # Layer norm at the beginning of the transformer layer.
612
613
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
614
        attention_output, attention_bias = \
615
616
617
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
618
                inference_params=inference_params)
619

620
621
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
622
623
624
625
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
626
        if self.drop_path is None:
627
628
629
630
631
632
633
634
635
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
636
            else:
637
                bias_dropout_add_func = get_bias_dropout_add(self.training)
638

639
640
641
642
643
644
645
646
647
648
649
650
            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
651

652
653
654
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                layernorm_input = bias_dropout_add_func(
                    attention_output,
                    attention_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

677
        # MLP.
678
        mlp_output, mlp_bias = self.mlp(layernorm_output)
679

680
681
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
682
            residual = layernorm_output
683
        else:
684
685
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
686
        if self.drop_path is None:
687
688
689
690
691
692
693
694
695
696
697
698
            # re-enable torch grad to enable fused optimization.
            with torch.enable_grad():
                output = bias_dropout_add_func(
                    mlp_output,
                    mlp_bias.expand_as(residual),
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(mlp_output + mlp_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
699
700
701
702

        return output


703
704
705
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
706
    The sole purpose of this layer is for when a standalone embedding layer
707
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
708
709
710
711
712
713
714
715
716
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
717
718
719
720
721
722
723
724
725
726
727
728
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


729
730
731
class ParallelTransformer(MegatronModule):
    """Transformer class."""

732
    def __init__(self, init_method, output_layer_init_method,
733
                 layer_type=LayerType.encoder,
734
                 self_attn_mask_type=AttnMaskType.padding,
735
736
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
737
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
738
        args = get_args()
739

740
741
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
742
        self.bf16 = args.bf16
743
        self.fp32_residual_connection = args.fp32_residual_connection
744
745
746
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
747
        self.drop_path_rate = drop_path_rate
748

749
        # Store activation checkpoiting flag.
750
751
        self.activations_checkpoint_method = args.activations_checkpoint_method
        self.activations_checkpoint_num_layers = args.activations_checkpoint_num_layers
752
753
        self.distribute_checkpointed_activations = \
            args.distribute_checkpointed_activations and not args.model_parallel_memory_opt
754

755
756
        self.model_parallel_memory_opt = args.model_parallel_memory_opt

757
        # Number of layers.
758
759
        self.num_layers = mpu.get_num_layers(
            args, args.model_type == ModelType.encoder_and_decoder)
Mohammad's avatar
Mohammad committed
760

Vijay Korthikanti's avatar
Vijay Korthikanti committed
761
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
762

Mohammad's avatar
Mohammad committed
763
764
        # Transformer layers.
        def build_layer(layer_number):
765
            return ParallelTransformerLayer(
766
767
768
                init_method,
                output_layer_init_method,
                layer_number,
769
                layer_type=layer_type,
770
                self_attn_mask_type=self_attn_mask_type,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
771
                drop_path_rate=self.drop_path_rates[layer_number - 1])
772
773
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
774
775
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
776
            assert args.model_type != ModelType.encoder_and_decoder
777
778
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
779
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
780
781
782
783
784
785
786
787
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
788
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
789
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
790
791
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
        else:
792
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
793
794
            if args.model_type == ModelType.encoder_and_decoder and \
                    mpu.get_pipeline_model_parallel_world_size() > 1:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
795
796
797
798
799
800
801
802
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
803

804
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
805
            # When a standalone embedding stage is used (e.g.,
806
            # args.standalone_embedding_stage == True), virtual pipeline ranks
807
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
808
809
810
811
812
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
813
814
815
816
817
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
818

819
        if self.post_process:
820
821
822
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
823
                eps=args.layernorm_epsilon,
824
825
                no_persist_layer_norm=args.no_persist_layer_norm,
                sequence_parallel=args.model_parallel_memory_opt)
826

Mohammad's avatar
Mohammad committed
827
    def _get_layer(self, layer_number):
828
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
829

830
831
    def _checkpointed_forward(self, hidden_states, attention_mask,
                              encoder_output, enc_dec_attn_mask):
832
833
834
835
        """Forward method with activation checkpointing."""
        def custom(start, end):
            def custom_forward(*inputs):
                x_ = inputs[0]
836
837
838
                attention_mask = inputs[1]
                encoder_output = inputs[2]
                enc_dec_attn_mask = inputs[3]
Mohammad's avatar
Mohammad committed
839
840
                for index in range(start, end):
                    layer = self._get_layer(index)
841
                    x_ = layer(x_, attention_mask, encoder_output, enc_dec_attn_mask)
842
843
844
                return x_
            return custom_forward

845
846
847
848
849
850
851
852
        if self.activations_checkpoint_method == 'uniform':
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
                hidden_states = mpu.checkpoint(
                    custom(l, l + self.activations_checkpoint_num_layers),
853
                    self.distribute_checkpointed_activations,
854
855
                    hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                l += self.activations_checkpoint_num_layers
856

857
858
859
860
861
862
863
864
        elif self.activations_checkpoint_method == 'block':
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
                if l < self.activations_checkpoint_num_layers:
                    hidden_states = mpu.checkpoint(
                        custom(l, l + 1),
865
                        self.distribute_checkpointed_activations,
866
867
868
869
870
871
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = custom(l, l + 1)(
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
        else:
            raise ValueError("Invalid activation checkpoint method.")
872
873
874

        return hidden_states

875
    def set_input_tensor(self, input_tensor):
876
877
878
879
880
881
882
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
883
884
        self.input_tensor = input_tensor

885
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
886
887
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
888
        # Checks.
mshoeybi's avatar
mshoeybi committed
889
        if inference_params:
890
            assert self.activations_checkpoint_method is None, \
891
                'inference does not work with activation checkpointing'
892

893
        if not self.pre_process:
894
            # See set_input_tensor()
895
            hidden_states = self.input_tensor
896

897
898
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
899
900
901
902
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
903
904
905
906
907
908
909
910
911
912
913
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
        # 
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
        hidden_states = mpu.make_viewless_tensor(
            hidden_states,
914
915
            requires_grad=True,
            keep_graph=True,
916
917
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
918
919
920
921
922
923
924
925
926
        if self.model_parallel_memory_opt:
            with mpu.get_cuda_rng_tracker().fork():
                # Forward pass.
                if self.activations_checkpoint_method is not None:
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask)
                else:
927
                    total = 0
Vijay Korthikanti's avatar
Vijay Korthikanti committed
928
929
930
931
932
933
934
935
                    for index in range(self.num_layers):
                        layer = self._get_layer(index)
                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            encoder_output=encoder_output,
                            enc_dec_attn_mask=enc_dec_attn_mask,
                            inference_params=inference_params)
936
                         
937
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
            # Forward pass.
            if self.activations_checkpoint_method is not None:
                hidden_states = self._checkpointed_forward(hidden_states,
                                                           attention_mask,
                                                           encoder_output,
                                                           enc_dec_attn_mask)
            else:
                for index in range(self.num_layers):
                    layer = self._get_layer(index)
                    hidden_states = layer(
                        hidden_states,
                        attention_mask,
                        encoder_output=encoder_output,
                        enc_dec_attn_mask=enc_dec_attn_mask,
                        inference_params=inference_params)
mshoeybi's avatar
mshoeybi committed
953

954
        # Final layer norm.
955
        if self.post_process:
956
957
            hidden_states = self.final_layernorm(hidden_states)

958
        return hidden_states