"docs/en/user_guides/useful_tools.md" did not exist on "30ad1aae13fe78e5b91d6d6f9eee835c1c086612"
schedules.py 28.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

31

Jared Casper's avatar
Jared Casper committed
32
33
34
35
36
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
37
38
39
            assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
                'number of microbatches is not divisible by pipeline-parallel ' \
                'size when using interleaved schedule'
Jared Casper's avatar
Jared Casper committed
40
41
42
43
44
45
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

46
47
def deallocate_output_tensor(out):
    '''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
48
49
50
51
52

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
Lawrence McAfee's avatar
Lawrence McAfee committed
53
54
    if out is None:
        return
55
56
57
58
59
60
61
62
63
    assert isinstance(out, torch.Tensor), \
        "expected Tensor, found %s." % type(out).__name__
    assert out._base is None, \
        "counter-productive to free a view of another tensor."
    out.data = torch.empty(
        (1,),
        device = out.device,
        dtype = out.dtype,
    )
64
        
65
def custom_backward(output, grad_output):
66
67
    '''Directly call C++ autograd engine.

68
    To make the 'deallocate_output_tensor' (above) optimization work, the C++
69
70
71
72
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
Lawrence McAfee's avatar
Lawrence McAfee committed
90
91
92
93
94
95
96
97
98
    Variable._execution_engine.run_backward(
        tensors = (output,),
        grad_tensors = (grad_output,),
        keep_graph = False,
        create_graph = False,
        inputs = tuple(),
        allow_unreachable=True,
        accumulate_grad=True,
    )
99
        
Jared Casper's avatar
Jared Casper committed
100

101
102
103
104
105
106
def forward_step(forward_step_func,
                 data_iterator,
                 model,
                 input_tensor,
                 forward_data_store,
                 collect_non_loss_data=False):
107
108
109
110
111
112
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
113
    args = get_args()
114
115
116
    timers = get_timers()

    timers('forward-compute').start()
117
118
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
119
120
121
122
123
124

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

125
    unwrapped_model.set_input_tensor(input_tensor)
126
    output_tensor, loss_func = forward_step_func(data_iterator, model)
127
    if mpu.is_pipeline_last_stage():
128
129
130
131
132
133
134
135
136
        if not collect_non_loss_data:
            output_tensor = loss_func(output_tensor)
            loss, loss_reduced = output_tensor
            output_tensor = loss / get_num_microbatches()
            forward_data_store.append(loss_reduced)
        else:
            data = loss_func(output_tensor, non_loss_data=True)
            forward_data_store.append(data)

137
138
    timers('forward-compute').stop()

139
140
141
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
142
143
144
145
146
147
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
148
149
150


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
151
152
153
154
155
156
157
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
158
159
160
161

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
162
163
164
165
166
167
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
168
169
170
171
172
173
174
175
176
177
178
179
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
180
181

    # Backward pass.
182
183
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
184
    custom_backward(output_tensor[0], output_tensor_grad[0])
185
186

    # Collect the grad of the input_tensor.
187
    input_tensor_grad = [None]
188
    if input_tensor is not None:
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
205
206
207
208
209
210

    timers('backward-compute').stop()

    return input_tensor_grad


211
212
213
214
215
216
217
218
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


219
220
221
222
223
224
def forward_backward_no_pipelining(forward_step_func,
                                   data_iterator, model,
                                   optimizer,
                                   timers,
                                   forward_only,
                                   collect_non_loss_data=False):
225
226
227
228
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
229
230
231
    assert len(model) == 1
    model = model[0]

232
233
234
235
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

236
    forward_data_store = []
237
238
239
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
240
241
242
            output_tensor = forward_step(forward_step_func, data_iterator,
                                         model, input_tensor, forward_data_store,
                                         collect_non_loss_data)
243
244
245
246
247
248
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
249
250
251
    output_tensor = forward_step(forward_step_func, data_iterator,
                                 model, input_tensor, forward_data_store,
                                 collect_non_loss_data)
252
253
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
254

255
    return forward_data_store
256
257


258
259
260
261
262
263
def forward_backward_pipelining_with_interleaving(forward_step_func,
                                                  data_iterator, model,
                                                  optimizer,
                                                  timers,
                                                  forward_only, 
                                                  collect_non_loss_data=False):
264
265
266
267
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
268
269
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
270
    forward_data_store = []
271
272
273
274
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
275
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
276

277
278
279
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

280
281
282
283
284
285
286
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
287
288
289
290
291
292
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
293
294
295
296
297
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
298
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
299
300
301
302
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
303
304
305
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

306
    def get_model_chunk_id(microbatch_id, forward):
307
        """Helper method to get the model chunk ID given the iteration number."""
308
309
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
310
        if not forward:
311
312
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
313

314
    def forward_step_helper(microbatch_id):
315
316
317
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
318
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
319
320
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

321
        # forward step
322
        if mpu.is_pipeline_first_stage():
323
324
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
325
326
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
327
328
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
329
                                     model[model_chunk_id],
330
331
332
                                     input_tensor, 
                                     forward_data_store,
                                     collect_non_loss_data)
333
334
        output_tensors[model_chunk_id].append(output_tensor)

335
336
337
338
339
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

340
341
        return output_tensor

342
    def backward_step_helper(microbatch_id):
343
344
345
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
346
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
347
348
349
350
351
352
353
354
355
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
356
357
358
359
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
360
361
362
363
364

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
365
    input_tensors[0].append(
366
        p2p_communication.recv_forward(tensor_shape, timers=timers))
367
368
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
369
370

        # Determine if tensor should be received from previous stage.
371
372
373
374
375
376
377
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
378
379

        # Don't send tensor downstream if on last stage.
380
381
        if mpu.is_pipeline_last_stage():
            output_tensor = None
382
383
384

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
385
386
387
388
389
390
391
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
392
                p2p_communication.send_forward_backward_recv_forward_backward(
393
394
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
395
                        tensor_shape=tensor_shape,
396
397
398
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
399
            input_tensor = \
400
                p2p_communication.send_forward_recv_forward(
401
402
403
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
404
        input_tensors[next_forward_model_chunk_id].append(input_tensor)
405
        deallocate_output_tensor(output_tensor)
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
443
444
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
445
446
447
448
449
450
451
452
453
454

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
455
456
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
457

458
459
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
460
461
462
463
464
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
465
            p2p_communication.send_forward_backward_recv_forward_backward(
466
467
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
468
                    tensor_shape=tensor_shape, timers=timers)
469
        deallocate_output_tensor(output_tensor)
470

471
472
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
473
474
475
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
476
477
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
478

479
    # Run cooldown backward passes (flush out pipeline).
480
481
482
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
483
                p2p_communication.recv_backward(tensor_shape, timers=timers))
484
485
486
487
488
489
490
491
492
493
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
494
                p2p_communication.send_backward_recv_backward(
495
496
497
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
498

499
    return forward_data_store
500
501


502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
    if model_type == ModelType.encoder_and_decoder:
        if mpu.is_pipeline_stage_before_split(rank):
            # If next rank is after split, then need transpose for encoder_hidden_state.
            if mpu.is_pipeline_stage_before_split(rank+1):
                tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
            else:
                tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
        else:
            tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
    else:
        tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


596
597
598
599
600
601
602
def forward_backward_pipelining_without_interleaving(forward_step_func,
                                                     data_iterator,
                                                     model,
                                                     optimizer,
                                                     timers,
                                                     forward_only,
                                                     collect_non_loss_data=False):
603
604
605
606
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
607
    args = get_args()
608
609
    timers = get_timers()

610
611
612
613
614
615
616
617
618
619
620
621
622
623
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

624
625
626
627
628
629
630
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

631
632
633
634
635
636
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
637
    forward_data_store = []
638
639
640

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
641
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
642
        output_tensor = forward_step(forward_step_func, data_iterator, model,
643
644
                                     input_tensor, forward_data_store,
                                     collect_non_loss_data)
645
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
646

647
648
649
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
650
            deallocate_output_tensor(output_tensor[0])
651
652
653
654
655

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
656
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
657
658
659
660
661
662

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
663
664
                                     input_tensor, forward_data_store,
                                     collect_non_loss_data)
665
        if forward_only:
666
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
667
668

            if not last_iteration:
669
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
670

671
        else:
672
            output_tensor_grad = \
673
674
675
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
676

677
678
679
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
680
            deallocate_output_tensor(output_tensor[0])
681

682
683
684
685
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
686
687
688
689
690
691
692

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
693
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
694
            else:
695
                input_tensor = \
696
697
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
698
699
700
701
702
703
704

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

705
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
706
707
708
709
710

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

711
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
712

713
    return forward_data_store