training.py 34.1 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Pretrain utilities."""
17
18
19

from datetime import datetime
import math
Mohammad's avatar
Mohammad committed
20
import sys
21
22
23
24
import torch
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from apex.optimizers import FusedAdam as Adam

Neel Kant's avatar
Neel Kant committed
25
from megatron import get_args
Mohammad's avatar
Mohammad committed
26
27
from megatron import get_timers
from megatron import get_tensorboard_writer
28
from megatron import mpu
Neel Kant's avatar
Neel Kant committed
29
from megatron import print_rank_0
30
from megatron import print_rank_last
Mohammad's avatar
Mohammad committed
31
32
from megatron.checkpointing import load_checkpoint
from megatron.checkpointing import save_checkpoint
33
34
from megatron.fp16 import FP16_Module
from megatron.fp16 import FP16_Optimizer
Mohammad's avatar
Mohammad committed
35
from megatron.initialize import initialize_megatron
36
37
38
from megatron.learning_rates import AnnealingLR
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import get_params_for_weight_decay_optimization
Neel Kant's avatar
Neel Kant committed
39
from megatron.model.realm_model import ICTBertModel
40
from megatron.utils import check_adlr_autoresume_termination
41
from megatron.utils import make_data_loader
42
from megatron.utils import report_memory
43
44


45
def pretrain(train_valid_test_dataset_provider, model_provider,
46
             forward_step_func, extra_args_provider=None, args_defaults={}):
47
48
49
    """Main training program.

    This function will run the followings in the order provided:
Mohammad's avatar
Mohammad committed
50
51
        1) initialize Megatron.
        2) setup model, optimizer and lr schedule using the model_provider.
52
        3) call train_val_test_data_provider to get train/val/test datasets.
Mohammad's avatar
Mohammad committed
53
        4) train the modle using the forward_step_func.
54
55

    Arguments:
56
57
58
        train_valid_test_dataset_provider: a function that takes the size of
            train/valid/test dataset and returns `train, valid, test` datasets.
        model_provider: a function that returns a vanilla version of the
Mohammad's avatar
Mohammad committed
59
60
61
62
63
64
65
66
67
68
            model. By vanilla we mean a simple model on cpu with no fp16 or ddp.
        forward_step_func: a function that takes a `data iterator` and `model`,
            and returns a `loss` scalar with a dictionary with key:values being
            the info we would like to monitor during training, for example
            `lm-loss: value`. We also require that this function add
            `batch generator` to the timers class.
        extra_args_provider: a function that takes a parser and adds arguments
            to it. It is used for programs to add their own arguments.
        args_defaults: a dictionary from argument-name to argument-value. It
            to set already parse arguments.
69
70
    """

71
    # Initalize and get arguments, timers, and Tensorboard writer.
72
73
    initialize_megatron(extra_args_provider=extra_args_provider,
                        args_defaults=args_defaults)
74

75
    args = get_args()
Mohammad's avatar
Mohammad committed
76
    timers = get_timers()
77
78

    # Model, optimizer, and learning rate.
Mohammad's avatar
Mohammad committed
79
80
81
    timers('model and optimizer').start()
    model, optimizer, lr_scheduler = setup_model_and_optimizer(model_provider)
    timers('model and optimizer').stop()
82
83

    # Data stuff.
84
85
86
87
88
    timers('train/valid/test data iterators').start()
    train_data_iterator, valid_data_iterator, test_data_iterator \
        = build_train_valid_test_data_iterators(
            train_valid_test_dataset_provider)
    timers('train/valid/test data iterators').stop()
Mohammad's avatar
Mohammad committed
89
90
91

    # Print setup timing.
    print_rank_0('done with setups ...')
92
    timers.log(['model and optimizer', 'train/valid/test data iterators'])
Mohammad's avatar
Mohammad committed
93
    print_rank_0('training ...')
94
95

    iteration = 0
96
    if args.do_train and args.train_iters > 0:
mohammad's avatar
mohammad committed
97
98
99
        iteration = train(forward_step_func,
                          model, optimizer, lr_scheduler,
                          train_data_iterator, valid_data_iterator)
Mohammad's avatar
Mohammad committed
100

101
102
103
    if args.do_valid:
        prefix = 'the end of training for val data'
        evaluate_and_print_results(prefix, forward_step_func,
104
                                   valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
105
                                   iteration, False)
106
107

    if args.save and iteration != 0:
108
        save_checkpoint(iteration, model, optimizer, lr_scheduler)
109
110
111
112
113
114

    if args.do_test:
        # Run on test data.
        prefix = 'the end of training for test data'
        evaluate_and_print_results(prefix, forward_step_func,
                                   test_data_iterator, model,
Mohammad's avatar
Mohammad committed
115
                                   0, True)
116
117


Mohammad's avatar
Mohammad committed
118
def get_model(model_provider_func):
119
    """Build the model."""
Mohammad's avatar
Mohammad committed
120
    args = get_args()
121
122

    # Build model on cpu.
Mohammad's avatar
Mohammad committed
123
    model = model_provider_func()
124
125
126

    # Print number of parameters.
    if mpu.get_data_parallel_rank() == 0:
127
        print(' > number of parameters on (tensor, pipeline) '
128
              'model parallel rank ({}, {}): {}'.format(
129
130
            mpu.get_tensor_model_parallel_rank(),
            mpu.get_pipeline_model_parallel_rank(),
131
132
133
134
135
136
137
138
139
140
            sum([p.nelement() for p in model.parameters()])), flush=True)

    # GPU allocation.
    model.cuda(torch.cuda.current_device())

    # Fp16 conversion.
    if args.fp16:
        model = FP16_Module(model)

    # Wrap model for distributed training."""
141
    if args.num_microbatches_in_minibatch > 1:
142
143
        assert args.DDP_impl == 'local'

144
145
    if args.DDP_impl == 'torch':
        i = torch.cuda.current_device()
Mohammad's avatar
Mohammad committed
146
147
        model = torchDDP(model, device_ids=[i], output_device=i,
                         process_group=mpu.get_data_parallel_group())
148
149
        return model
    if args.DDP_impl == 'local':
Mohammad's avatar
Mohammad committed
150
        model = LocalDDP(model)
151
152
        return model

153
    raise NotImplementedError('Unknown DDP implementation specified: {}. '
154
                              'Exiting.'.format(args.DDP_impl))
155
156


Mohammad's avatar
Mohammad committed
157
def get_optimizer(model):
158
    """Set up the optimizer."""
Mohammad's avatar
Mohammad committed
159
    args = get_args()
160
161

    # Build parameter groups (weight decay and non-decay).
Mohammad's avatar
Mohammad committed
162
    while isinstance(model, (torchDDP, LocalDDP, FP16_Module)):
163
164
165
166
167
168
        model = model.module
    param_groups = get_params_for_weight_decay_optimization(model)

    # Add model parallel attribute if it is not set.
    for param_group in param_groups:
        for param in param_group['params']:
169
170
            if not hasattr(param, 'tensor_model_parallel'):
                param.tensor_model_parallel = False
171
172

    # Use Adam.
173
174
    optimizer = Adam(param_groups, lr=args.lr, weight_decay=args.weight_decay,
        betas=(args.adam_beta1, args.adam_beta2), eps=args.adam_eps)
175
176
177
178
179
180
181
182

    # Wrap into fp16 optimizer.
    if args.fp16:
        optimizer = FP16_Optimizer(optimizer,
                                   static_loss_scale=args.loss_scale,
                                   dynamic_loss_scale=args.dynamic_loss_scale,
                                   dynamic_loss_args={
                                       'scale_window': args.loss_scale_window,
Neel Kant's avatar
Neel Kant committed
183
                                       'min_scale': args.min_scale,
184
185
186
187
188
                                       'delayed_shift': args.hysteresis})

    return optimizer


Mohammad's avatar
Mohammad committed
189
def get_learning_rate_scheduler(optimizer):
190
    """Build the learning rate scheduler."""
Mohammad's avatar
Mohammad committed
191
    args = get_args()
192
193
194
195
196
197
198

    # Add linear learning rate scheduler.
    if args.lr_decay_iters is not None:
        num_iters = args.lr_decay_iters
    else:
        num_iters = args.train_iters
    num_iters = max(1, num_iters)
Mohammad's avatar
Mohammad committed
199
    init_step = 0
200
201
202
203
204
    warmup_iter = args.warmup * num_iters
    lr_scheduler = AnnealingLR(
        optimizer,
        start_lr=args.lr,
        warmup_iter=warmup_iter,
Mohammad's avatar
Mohammad committed
205
        total_iters=num_iters,
206
207
208
209
210
211
212
213
214
        decay_style=args.lr_decay_style,
        last_iter=init_step,
        min_lr=args.min_lr,
        use_checkpoint_lr_scheduler=args.use_checkpoint_lr_scheduler,
        override_lr_scheduler=args.override_lr_scheduler)

    return lr_scheduler


Mohammad's avatar
Mohammad committed
215
def setup_model_and_optimizer(model_provider_func):
216
    """Setup model and optimizer."""
Mohammad's avatar
Mohammad committed
217
    args = get_args()
218

Mohammad's avatar
Mohammad committed
219
220
221
    model = get_model(model_provider_func)
    optimizer = get_optimizer(model)
    lr_scheduler = get_learning_rate_scheduler(optimizer)
222
223

    if args.load is not None:
224
        args.iteration = load_checkpoint(model, optimizer, lr_scheduler)
225
226
227
    else:
        args.iteration = 0

Neel Kant's avatar
Neel Kant committed
228
229
230
231
232
    # get model without FP16 and/or TorchDDP wrappers
    unwrapped_model = model
    while hasattr(unwrapped_model, 'module'):
        unwrapped_model = unwrapped_model.module

233
    if args.iteration == 0 and hasattr(unwrapped_model, 'init_state_dict_from_bert'):
234
        print("Initializing ICT from pretrained BERT model", flush=True)
235
        unwrapped_model.init_state_dict_from_bert()
Neel Kant's avatar
Neel Kant committed
236

237
238
239
    return model, optimizer, lr_scheduler


240
241
242
243
244
245
246
247
def communicate(tensor_send_next, tensor_send_prev, recv_forward, recv_backward):
    """Communicate tensors between stages using torch.distributed.ring_exchange(.) API."""
    args = get_args()

    # Create placeholder tensors for receive in forward and backward directions
    # if needed.
    tensor_recv_prev = None
    tensor_recv_next = None
248
    tensor_shape = (args.seq_length, args.batch_size, args.hidden_size)
249
250
251
    if recv_forward:
        tensor_recv_prev = torch.empty(tensor_shape,
                                       requires_grad=True,
252
253
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
254
255
256
    if recv_backward:
        tensor_recv_next = torch.empty(tensor_shape,
                                       requires_grad=True,
257
258
                                       device=torch.cuda.current_device(),
                                       dtype=args.params_dtype)
259
260
261
262
263
264

    # Send tensors in both the forward and backward directions as appropriate.
    torch.distributed.ring_exchange(tensor_send_prev=tensor_send_prev,
                                    tensor_recv_prev=tensor_recv_prev,
                                    tensor_send_next=tensor_send_next,
                                    tensor_recv_next=tensor_recv_next,
265
                                    group=mpu.get_pipeline_model_parallel_group())
266
267
268
269
270

    return tensor_recv_prev, tensor_recv_next


def backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad):
271
    """Backward step."""
Mohammad's avatar
Mohammad committed
272
273
    args = get_args()
    timers = get_timers()
274

275
276
277
278
    # Retain the grad on the input_tensor.
    if input_tensor is not None:
        input_tensor.retain_grad()

279
    # Backward pass.
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    if args.fp16:
        optimizer.backward(output_tensor, update_master_grads=False,
                           output_tensor_grad=output_tensor_grad)
    else:
        torch.autograd.backward(output_tensor, grad_tensors=output_tensor_grad)

    # Collect the grad of the input_tensor.
    input_tensor_grad = None
    if input_tensor is not None:
        input_tensor_grad = input_tensor.grad

    return input_tensor_grad


294
295
296
def forward_step_with_communication(forward_step_func, data_iterator, model,
                                    input_tensors, output_tensors,
                                    losses_reduced, timers):
297
298
    args = get_args()

299
    if not mpu.is_pipeline_first_stage():
300
        timers('forward-recv').start()
301
302
303
304
305
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=True,
            recv_backward=False)
306
        timers('forward-recv').stop()
307
308
309
310
    else:
        input_tensor = None

    # Forward model for one step.
311
    timers('forward-compute').start()
312
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
313
    timers('forward-compute').stop()
314
315
316

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
317
        output_tensor = loss / args.num_microbatches_in_minibatch
318
319
        losses_reduced.append(loss_reduced)
    else:
320
        timers('forward-send').start()
321
322
323
324
325
        communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=False)
326
        timers('forward-send').stop()
327
328
329
330
331
332
333
334
335
336
337
338

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)


def backward_step_with_communication(optimizer, model, input_tensors, output_tensors, timers):
    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    if mpu.is_pipeline_last_stage():
        output_tensor_grad = None
    else:
339
        timers('backward-recv').start()
340
341
342
343
344
        _, output_tensor_grad = communicate(
            tensor_send_next=None,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
345
        timers('backward-recv').stop()
346
347

    # Backward pass for one step.
348
    timers('backward-compute').start()
349
350
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
351
    timers('backward-compute').stop()
352
353

    if not mpu.is_pipeline_first_stage():
354
        timers('backward-send').start()
355
356
357
358
359
        communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=False,
            recv_backward=False)
360
        timers('backward-send').stop()
361
362


363
364
365
366
367
def forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                  optimizer,
                                                  input_tensor, last_microbatch,
                                                  input_tensors, output_tensors,
                                                  losses_reduced, timers):
368
369
    args = get_args()

370
371
372
373
374
375
376
    # Forward model for one step.
    timers('forward-compute').start()
    output_tensor = forward_step_func(data_iterator, model, input_tensor)
    timers('forward-compute').stop()

    if mpu.is_pipeline_last_stage():
        loss, loss_reduced = output_tensor
377
        output_tensor = loss / args.num_microbatches_in_minibatch
378
379
380
        output_tensor_grad = None
        losses_reduced.append(loss_reduced)
    else:
Deepak Narayanan's avatar
Deepak Narayanan committed
381
        timers('forward-send-backward-recv').start()
382
383
384
385
386
        _, output_tensor_grad = communicate(
            tensor_send_next=output_tensor,
            tensor_send_prev=None,
            recv_forward=False,
            recv_backward=True)
Deepak Narayanan's avatar
Deepak Narayanan committed
387
        timers('forward-send-backward-recv').stop()
388
389
390
391
392
393
394
395
396
397
398
399
400
401

    input_tensors.append(input_tensor)
    output_tensors.append(output_tensor)

    input_tensor = input_tensors.pop(0)
    output_tensor = output_tensors.pop(0)

    # Backward pass for one step.
    timers('backward-compute').start()
    input_grad_tensor = \
        backward_step(optimizer, model, input_tensor, output_tensor, output_tensor_grad)
    timers('backward-compute').stop()

    if not mpu.is_pipeline_first_stage():
Deepak Narayanan's avatar
Deepak Narayanan committed
402
        timers('backward-send-forward-recv').start()
403
404
405
406
407
        input_tensor, _ = communicate(
            tensor_send_next=None,
            tensor_send_prev=input_grad_tensor,
            recv_forward=(not last_microbatch),
            recv_backward=False)
Deepak Narayanan's avatar
Deepak Narayanan committed
408
        timers('backward-send-forward-recv').stop()
409
410
411
412
413
414
    else:
        input_tensor = None

    return input_tensor


415
416
417
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers):
    """Run forward and backward passes without inter-stage communication."""
418
419
    args = get_args()

420
421
422
423
    losses_reduced = []
    for i in range(args.num_microbatches_in_minibatch):
        timers('forward-compute').start()
        loss, loss_reduced = forward_step_func(data_iterator, model, input_tensor=None)
424
        output_tensor = loss / args.num_microbatches_in_minibatch
425
426
427
428
429
430
431
432
433
434
        losses_reduced.append(loss_reduced)
        timers('forward-compute').stop()

        timers('backward-compute').start()
        output_tensor_grad = None
        backward_step(optimizer, model, input_tensor=None,
                      output_tensor=output_tensor, output_tensor_grad=None)
        timers('backward-compute').stop()

    return losses_reduced
435

436
437
438
439
440
441
442

def forward_backward_pipelining(forward_step_func, data_iterator, model,
                                optimizer, timers):
    """Run 1F1B schedule, with communication and warmup + cooldown microbatches as needed."""
    args = get_args()

    # Compute number of warmup microbatches.
443
    num_microbatches_in_minibatch = args.num_microbatches_in_minibatch
444
445
446
447
448
449
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches_in_minibatch)
450
451
    num_microbatches_in_minibatch_remaining = \
        num_microbatches_in_minibatch - num_warmup_microbatches
452
453
454
455
456

    input_tensors = []
    output_tensors = []
    losses_reduced = []

457
458
    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
459
460
461
462
        forward_step_with_communication(
            forward_step_func, data_iterator, model,
            input_tensors, output_tensors,
            losses_reduced, timers)
463

464
    # Before running 1F1B, need to receive first forward tensor.
465
466
467
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_in_minibatch_remaining > 0:
468
469
470
        if mpu.is_pipeline_first_stage():
            input_tensor = None
        else:
471
            timers('forward-recv').start()
472
473
474
475
            input_tensor, _ = communicate(tensor_send_next=None,
                                          tensor_send_prev=None,
                                          recv_forward=True,
                                          recv_backward=False)
476
            timers('forward-recv').stop()
477
478

    # Run 1F1B.
479
480
    for i in range(num_microbatches_in_minibatch_remaining):
        last_iteration = (i == (num_microbatches_in_minibatch_remaining - 1))
481
482
483
484
485
486
487
        input_tensor = \
            forward_and_backward_steps_with_communication(forward_step_func, data_iterator, model,
                                                          optimizer,
                                                          input_tensor, last_iteration,
                                                          input_tensors, output_tensors,
                                                          losses_reduced, timers)

488
489
    # Run cooldown backward passes.
    for i in range(num_warmup_microbatches):
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
        backward_step_with_communication(
            optimizer, model, input_tensors, output_tensors, timers)

    return losses_reduced


def train_step(forward_step_func, data_iterator,
               model, optimizer, lr_scheduler):
    """Single training step."""
    args = get_args()
    timers = get_timers()

    # Set grad to zero.
    if args.fp16:
        optimizer.zero_grad(set_grads_to_None=True)
    else:
        optimizer.zero_grad()

    if mpu.get_pipeline_model_parallel_world_size() > 1:
        losses_reduced = forward_backward_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
    else:
        losses_reduced = forward_backward_no_pipelining(
            forward_step_func, data_iterator, model, optimizer, timers)
514
515
516

    # All-reduce if needed.
    if args.DDP_impl == 'local':
517
        timers('backward-params-all-reduce').start()
518
519
        model.allreduce_params(reduce_after=False,
                               fp32_allreduce=args.fp32_allreduce)
520
        timers('backward-params-all-reduce').stop()
521

522
523
524
525
    # All-reduce word_embeddings' grad across first and last stages to ensure
    # that word_embeddings parameters stay in sync.
    # This should only run for models that support pipelined model parallelism
    # (BERT and GPT-2).
526
    timers('backward-embedding-all-reduce').start()
527
    if (mpu.is_pipeline_first_stage() or mpu.is_pipeline_last_stage()) and \
528
            mpu.get_pipeline_model_parallel_world_size() > 1:
529
530
531
532
533
534
535
        unwrapped_model = model
        while isinstance(unwrapped_model, (torchDDP, LocalDDP, FP16_Module)):
            unwrapped_model = unwrapped_model.module

        word_embeddings_weight = unwrapped_model.word_embeddings_weight()
        torch.distributed.all_reduce(word_embeddings_weight.grad,
                                     group=mpu.get_embedding_group())
536
    timers('backward-embedding-all-reduce').stop()
537

538
539
540
541
542
543
    # Update master gradients.
    timers('backward-master-grad').start()
    if args.fp16:
        optimizer.update_master_grads()
    timers('backward-master-grad').stop()

544
    # Clipping gradients helps prevent the exploding gradient.
545
    timers('backward-clip-grad').start()
546
    if args.clip_grad > 0.:
547
        if not args.fp16:
548
549
550
551
552
553
554
555
            named_parameters = model.named_parameters()
            parameters = []
            parameter_names = []
            for parameter_name, parameter in model.named_parameters():
                parameters.append(parameter)
                parameter_names.append(parameter_name)
            mpu.clip_grad_norm(parameters, args.clip_grad,
                               parameter_names=parameter_names)
556
557
        else:
            optimizer.clip_master_grads(args.clip_grad)
558
    timers('backward-clip-grad').stop()
559
560
561
562
563
564
565
566
567
568
569
570
571

    # Update parameters.
    timers('optimizer').start()
    optimizer.step()
    timers('optimizer').stop()

    # Update learning rate.
    skipped_iter = 0
    if not (args.fp16 and optimizer.overflow):
        lr_scheduler.step()
    else:
        skipped_iter = 1

572
    if mpu.is_pipeline_last_stage():
573
574
575
576
        # Average loss across microbatches.
        loss_reduced = {}
        for key in losses_reduced[0]:
            losses_reduced_for_key = [x[key] for x in losses_reduced]
577
            loss_reduced[key] = sum(losses_reduced_for_key) / len(losses_reduced_for_key)
578
579
        return loss_reduced, skipped_iter
    return {}, skipped_iter
580
581


Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
582
def training_log(loss_dict, total_loss_dict, learning_rate, iteration,
mohammad's avatar
mohammad committed
583
                 loss_scale, report_memory_flag, skipped_iter):
Mohammad's avatar
Mohammad committed
584
585
586
587
    """Log training information such as losses, timing, ...."""
    args = get_args()
    timers = get_timers()
    writer = get_tensorboard_writer()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
588
589

    # Update losses.
mohammad's avatar
mohammad committed
590
591
592
    skipped_iters_key = 'skipped iterations'
    total_loss_dict[skipped_iters_key] = total_loss_dict.get(
        skipped_iters_key, 0) + skipped_iter
mohammad's avatar
mohammad committed
593
    got_nan_key = 'got nan'
mohammad's avatar
mohammad committed
594
595

    got_nan = False
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
596
    for key in loss_dict:
mohammad's avatar
mohammad committed
597
        if not skipped_iter:
598
599
            total_loss_dict[key] = total_loss_dict.get(
                key, torch.cuda.FloatTensor([0.0])) + loss_dict[key]
mohammad's avatar
mohammad committed
600
601
602
603
604
        else:
            value = loss_dict[key].float().sum().item()
            is_nan = value == float('inf') or \
                     value == -float('inf') or \
                     value != value
mohammad's avatar
mohammad committed
605
606
607
608
            got_nan = got_nan or is_nan

    total_loss_dict[got_nan_key] = total_loss_dict.get(
        got_nan_key, 0) + int(got_nan)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
609
610
611

    # Logging.
    timers_to_log = []
Neel Kant's avatar
Neel Kant committed
612

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
613
614
615
    def add_to_logging(name):
        if name in timers.timers:
            timers_to_log.append(name)
616
617
618
    add_to_logging('forward-compute')
    add_to_logging('forward-recv')
    add_to_logging('forward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
619
    add_to_logging('forward-send-backward-recv')
620
621
622
    add_to_logging('backward-compute')
    add_to_logging('backward-recv')
    add_to_logging('backward-send')
Deepak Narayanan's avatar
Deepak Narayanan committed
623
    add_to_logging('backward-send-forward-recv')
624
    add_to_logging('backward-master-grad')
625
    add_to_logging('backward-params-all-reduce')
626
    add_to_logging('backward-embedding-all-reduce')
627
    add_to_logging('backward-clip-grad')
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    add_to_logging('optimizer')
    add_to_logging('batch generator')

    # Tensorboard values.
    if writer and torch.distributed.get_rank() == 0:
        writer.add_scalar('learning_rate', learning_rate, iteration)
        for key in loss_dict:
            writer.add_scalar(key, loss_dict[key], iteration)
        if args.fp16:
            writer.add_scalar('loss_scale', loss_scale, iteration)
        normalizer = iteration % args.log_interval
        if normalizer == 0:
            normalizer = args.log_interval
        timers.write(timers_to_log, writer, iteration,
                     normalizer=normalizer)

    if iteration % args.log_interval == 0:
        elapsed_time = timers('interval time').elapsed()
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('iteration_time',
                              elapsed_time / args.log_interval, iteration)
        log_string = ' iteration {:8d}/{:8d} |'.format(iteration,
                                                       args.train_iters)
        log_string += ' elapsed time per iteration (ms): {:.1f} |'.format(
            elapsed_time * 1000.0 / args.log_interval)
        log_string += ' learning rate: {:.3E} |'.format(learning_rate)
mohammad's avatar
mohammad committed
654
655
        num_iterations = max(
            1, args.log_interval - total_loss_dict[skipped_iters_key])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
656
        for key in total_loss_dict:
mohammad's avatar
mohammad committed
657
            if key not in [skipped_iters_key, got_nan_key]:
mohammad's avatar
mohammad committed
658
                avg = total_loss_dict[key].item() / float(num_iterations)
659
660
661
                if avg > 0.0:
                    log_string += ' {}: {:.6E} |'.format(key, avg)
                total_loss_dict[key] = torch.cuda.FloatTensor([0.0])
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
662
663
        if args.fp16:
            log_string += ' loss scale: {:.1f} |'.format(loss_scale)
mohammad's avatar
mohammad committed
664
665
        log_string += ' number of skipped iterations: {:3d} |'.format(
            total_loss_dict[skipped_iters_key])
mohammad's avatar
mohammad committed
666
667
        log_string += ' number of nan iterations: {:3d} |'.format(
            total_loss_dict[got_nan_key])
mohammad's avatar
mohammad committed
668
        total_loss_dict[skipped_iters_key] = 0
mohammad's avatar
mohammad committed
669
        total_loss_dict[got_nan_key] = 0
670
        print_rank_last(log_string)
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
671
672
673
674
675
676
677
678
        if report_memory_flag:
            report_memory('after {} iterations'.format(iteration))
            report_memory_flag = False
        timers.log(timers_to_log, normalizer=args.log_interval)

    return report_memory_flag


679
def train(forward_step_func, model, optimizer, lr_scheduler,
680
          train_data_iterator, valid_data_iterator):
681
    """Train the model function."""
Mohammad's avatar
Mohammad committed
682
683
    args = get_args()
    timers = get_timers()
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

    # Turn on training mode which enables dropout.
    model.train()

    # Tracking loss.
    total_loss_dict = {}

    # Iterations.
    iteration = args.iteration

    timers('interval time').start()
    report_memory_flag = True
    while iteration < args.train_iters:
        loss_dict, skipped_iter = train_step(forward_step_func,
                                             train_data_iterator,
                                             model,
                                             optimizer,
Mohammad's avatar
Mohammad committed
701
                                             lr_scheduler)
702
703
704
        iteration += 1

        # Logging.
Mohammad's avatar
Mohammad committed
705
706
707
        loss_scale = None
        if args.fp16:
            loss_scale = optimizer.loss_scale
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
708
709
        report_memory_flag = training_log(loss_dict, total_loss_dict,
                                          optimizer.param_groups[0]['lr'],
Mohammad's avatar
Mohammad committed
710
                                          iteration, loss_scale,
mohammad's avatar
mohammad committed
711
                                          report_memory_flag, skipped_iter)
712
713

        # Autoresume
714
715
        if args.adlr_autoresume and \
           (iteration % args.adlr_autoresume_interval == 0):
716
            check_adlr_autoresume_termination(iteration, model, optimizer,
717
                                              lr_scheduler)
718
719
720
721

        # Checkpointing
        if args.save and args.save_interval and \
           iteration % args.save_interval == 0:
722
            save_checkpoint(iteration, model, optimizer, lr_scheduler)
723
724
725
726
727
728

        # Evaluation
        if args.eval_interval and iteration % args.eval_interval == 0 and \
           args.do_valid:
            prefix = 'iteration {}'.format(iteration)
            evaluate_and_print_results(prefix, forward_step_func,
729
                                       valid_data_iterator, model,
Mohammad's avatar
Mohammad committed
730
                                       iteration, False)
731
732

        if args.exit_interval and iteration % args.exit_interval == 0:
733
            torch.distributed.barrier()
734
735
            time_str = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            rank = torch.distributed.get_rank()
Mohammad's avatar
Mohammad committed
736
737
738
            print_rank_0('rank: {} | time: {} | exiting the program at '
                         'iteration {}'.format(rank, time_str, iteration))
            sys.exit()
739

mohammad's avatar
mohammad committed
740
    return iteration
741
742


Mohammad's avatar
Mohammad committed
743
def evaluate(forward_step_func, data_iterator, model, verbose=False):
744
    """Evaluation."""
Mohammad's avatar
Mohammad committed
745
    args = get_args()
746
747
748
749
750
751
752
753
754
755
756
757
758

    # Turn on evaluation mode which disables dropout.
    model.eval()

    total_loss_dict = {}

    with torch.no_grad():
        iteration = 0
        while iteration < args.eval_iters:
            iteration += 1
            if verbose and iteration % args.log_interval == 0:
                print_rank_0('Evaluating iter {}/{}'.format(iteration,
                                                            args.eval_iters))
759

760
            if not mpu.is_pipeline_first_stage():
761
762
763
764
765
766
767
768
                input_tensor, _ = communicate(
                    tensor_send_next=None,
                    tensor_send_prev=None,
                    recv_forward=True,
                    recv_backward=False)
            else:
                input_tensor = None

769
            # Forward evaluation.
770
771
            output_tensor = forward_step_func(data_iterator, model, input_tensor)

772
            if mpu.is_pipeline_last_stage():
773
774
775
                _, loss_dict = output_tensor
                # Reduce across processes.
                for key in loss_dict:
776
                    total_loss_dict[key] = total_loss_dict.get(key, torch.cuda.FloatTensor([0.0])) + \
777
778
779
780
781
782
783
784
                        loss_dict[key]
            else:
                communicate(
                    tensor_send_next=output_tensor,
                    tensor_send_prev=None,
                    recv_forward=False,
                    recv_backward=False)

785
786
787
788
789
790
791
792
793
794
795
    # Move model back to the train mode.
    model.train()

    for key in total_loss_dict:
        total_loss_dict[key] /= args.eval_iters

    return total_loss_dict


def evaluate_and_print_results(prefix, forward_step_func,
                               data_iterator, model,
Mohammad's avatar
Mohammad committed
796
                               iteration, verbose=False):
797
    """Helper function to evaluate and dump results on screen."""
Mohammad's avatar
Mohammad committed
798
799
800
    writer = get_tensorboard_writer()

    total_loss_dict = evaluate(forward_step_func, data_iterator, model, verbose)
801
802
803
804
805
806
807
808
809
810
811
812
    string = ' validation loss at {} | '.format(prefix)
    for key in total_loss_dict:
        string += '{} value: {:.6E} | '.format(key, total_loss_dict[key].item())
        ppl = math.exp(min(20, total_loss_dict[key].item()))
        string += '{} PPL: {:.6E} | '.format(key, ppl)
        if writer and torch.distributed.get_rank() == 0:
            writer.add_scalar('{} value'.format(key),
                              total_loss_dict[key].item(),
                              iteration)
            writer.add_scalar('{} ppl'.format(key), ppl, iteration)

    length = len(string) + 1
813
814
815
    print_rank_last('-' * length)
    print_rank_last(string)
    print_rank_last('-' * length)
816
817


818
819
820
def build_train_valid_test_data_iterators(
        build_train_valid_test_datasets_provider):
    """XXX"""
Mohammad's avatar
Mohammad committed
821
    args = get_args()
822

823
824
825
826
    (train_dataloader, valid_dataloader, test_dataloader) = (None, None, None)

    print_rank_0('> building train, validation, and test datasets ...')
    # Data loader only on rank 0 of each model parallel group.
827
    if mpu.get_tensor_model_parallel_rank() == 0:
828
829
        # Rank, size, and global batch size.
        data_parallel_size = mpu.get_data_parallel_world_size()
830
        global_batch_size = args.batch_size * data_parallel_size * args.num_microbatches_in_minibatch
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864

        # Number of train/valid/test samples.
        train_iters = args.train_iters
        eval_iters = (train_iters // args.eval_interval + 1) * args.eval_iters
        test_iters = args.eval_iters
        train_val_test_num_samples = [train_iters * global_batch_size,
                                      eval_iters * global_batch_size,
                                      test_iters * global_batch_size]
        print_rank_0(' > datasets target sizes (minimum size):')
        print_rank_0('    train:      {}'.format(train_val_test_num_samples[0]))
        print_rank_0('    validation: {}'.format(train_val_test_num_samples[1]))
        print_rank_0('    test:       {}'.format(train_val_test_num_samples[2]))

        # Build the datasets.
        train_ds, valid_ds, test_ds = build_train_valid_test_datasets_provider(
            train_val_test_num_samples)

        # Build dataloders.
        train_dataloader = make_data_loader(train_ds)
        valid_dataloader = make_data_loader(valid_ds)
        test_dataloader = make_data_loader(test_ds)

        # Flags to know if we need to do training/validation/testing.
        do_train = train_dataloader is not None and args.train_iters > 0
        do_valid = valid_dataloader is not None and args.eval_iters > 0
        do_test = test_dataloader is not None and args.eval_iters > 0
        # Need to broadcast num_tokens and num_type_tokens.
        flags = torch.cuda.LongTensor(
            [int(do_train), int(do_valid), int(do_test)])
    else:
        flags = torch.cuda.LongTensor([0, 0, 0])

    # Broadcast num tokens.
    torch.distributed.broadcast(flags,
865
866
                                mpu.get_tensor_model_parallel_src_rank(),
                                group=mpu.get_tensor_model_parallel_group())
867
868
869
870
    args.do_train = flags[0].item()
    args.do_valid = flags[1].item()
    args.do_test = flags[2].item()

Mohammad's avatar
Mohammad committed
871
    # Shift the start iterations.
872
873
    if train_dataloader is not None:
        train_dataloader.batch_sampler.start_iter = args.iteration % \
Neel Kant's avatar
Neel Kant committed
874
            len(train_dataloader)
Mohammad's avatar
Mohammad committed
875
        print_rank_0('setting training data start iteration to {}'.
876
877
                     format(train_dataloader.batch_sampler.start_iter))
    if valid_dataloader is not None:
Mohammad's avatar
Mohammad committed
878
        start_iter_val = (args.iteration // args.eval_interval) * \
Neel Kant's avatar
Neel Kant committed
879
            args.eval_iters
880
        valid_dataloader.batch_sampler.start_iter = start_iter_val % \
Neel Kant's avatar
Neel Kant committed
881
            len(valid_dataloader)
Mohammad's avatar
Mohammad committed
882
        print_rank_0('setting validation data start iteration to {}'.
883
                     format(valid_dataloader.batch_sampler.start_iter))
884

885
886
887
    # Build iterators.
    if train_dataloader is not None:
        train_data_iterator = iter(train_dataloader)
888
889
890
    else:
        train_data_iterator = None

891
892
    if valid_dataloader is not None:
        valid_data_iterator = iter(valid_dataloader)
893
    else:
894
        valid_data_iterator = None
895

896
897
    if test_dataloader is not None:
        test_data_iterator = iter(test_dataloader)
898
899
900
    else:
        test_data_iterator = None

901
    return train_data_iterator, valid_data_iterator, test_data_iterator