schedules.py 29.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

31

Jared Casper's avatar
Jared Casper committed
32
33
34
35
36
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
37
38
39
40
41
42
43
            # >>>
            # from lutil import pax
            # pax({
            #     "num microbatches" : get_num_microbatches(),
            #     "pipeline size" : args.pipeline_model_parallel_size,
            # })
            # <<<
Lawrence McAfee's avatar
Lawrence McAfee committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
            # >>>
            # assert get_num_microbatches() % args.pipeline_model_parallel_size == 0, \
            #     'number of microbatches is not divisible by pipeline-parallel ' \
            #     'size when using interleaved schedule'
            # assert get_num_microbatches() % \
            #     args.transformer_pipeline_model_parallel_size == 0, \
            #     'number of microbatches (%d) is not divisible by transformer-' \
            #     'pipeline-model-parallel-size (%d) when using interleaved ' \
            #     'schedule' % (
            #         get_num_microbatches(),
            #         args.transformer_pipeline_model_parallel_size,
            #     )
            assert get_num_microbatches() % \
                args.pipeline_model_parallel_size == 0, \
                'number of microbatches (%d) is not divisible by pipeline-' \
                'model-parallel-size (%d) when using interleaved schedule' % (
                    get_num_microbatches(),
                    args.pipeline_model_parallel_size,
                )
            # <<<
Jared Casper's avatar
Jared Casper committed
64
65
66
67
68
69
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

70
71
def deallocate_output_tensor(out):
    '''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
72
73
74
75
76

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
Lawrence McAfee's avatar
Lawrence McAfee committed
77
    if out is None:
78
        return
79
80
81
82
83
84
85
86
87
    assert isinstance(out, torch.Tensor), \
        "expected Tensor, found %s." % type(out).__name__
    assert out._base is None, \
        "counter-productive to free a view of another tensor."
    out.data = torch.empty(
        (1,),
        device = out.device,
        dtype = out.dtype,
    )
88
        
89
def custom_backward(output, grad_output):
90
91
    '''Directly call C++ autograd engine.

92
    To make the 'deallocate_output_tensor' (above) optimization work, the C++
93
94
95
96
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
    Variable._execution_engine.run_backward(
        tensors = (output,),
        grad_tensors = (grad_output,),
        keep_graph = False,
        create_graph = False,
        inputs = tuple(),
        allow_unreachable=True,
        accumulate_grad=True,
    )
123
        
Jared Casper's avatar
Jared Casper committed
124

125
def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
126
127
128
129
130
131
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
132
    args = get_args()
133
134
135
    timers = get_timers()

    timers('forward-compute').start()
136
137
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
138
139
140
141
142
143

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

144
    unwrapped_model.set_input_tensor(input_tensor)
145
    output_tensor, loss_func = forward_step_func(data_iterator, model)
146
147
148
    # >>>
    mpu.assert_viewless_tensor(output_tensor)
    # <<<
149
    if mpu.is_pipeline_last_stage():
150
        output_tensor = loss_func(output_tensor)
151
152
153
154
155
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

156
157
158
159
    # >>>
    mpu.assert_viewless_tensor(output_tensor)
    # <<<

160
161
162
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
163
164
165
166
167
168
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
169
170
171


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
172
173
174
175
176
177
178
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
179
180
181
182

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
183
184
185
186
187
188
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
189
190
191
192
193
194
195
196
197
198
199
200
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
201
202

    # Backward pass.
203
204
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
205
    custom_backward(output_tensor[0], output_tensor_grad[0])
206
207

    # Collect the grad of the input_tensor.
208
    input_tensor_grad = [None]
209
    if input_tensor is not None:
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
226
227
228
229
230
231

    timers('backward-compute').stop()

    return input_tensor_grad


232
233
234
235
236
237
238
239
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


240
241
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
242
243
244
245
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
246
247
248
    assert len(model) == 1
    model = model[0]

249
250
251
252
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

253
    losses_reduced = []
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
            output_tensor = forward_step(forward_step_func, data_iterator, model,
                                         input_tensor, losses_reduced)
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
    output_tensor = forward_step(forward_step_func, data_iterator, model,
                                 input_tensor, losses_reduced)
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
269
270
271
272
273
274

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
275
276
277
278
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
279
280
281
282
283
284
285
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
286
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
287

288
289
290
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

291
292
293
294
295
296
297
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
298
299
300
301
302
303
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
304
305
306
307
308
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
309
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
310
311
312
313
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
314
315
316
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

317
    def get_model_chunk_id(microbatch_id, forward):
318
        """Helper method to get the model chunk ID given the iteration number."""
319
320
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
321
        if not forward:
322
323
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
324

325
    def forward_step_helper(microbatch_id):
326
327
328
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
329
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
330
331
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

332
        # forward step
333
        if mpu.is_pipeline_first_stage():
334
335
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
336
337
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
338
339
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
340
341
342
343
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

344
        # >>>
345
346
347
348
349
350
        # if id(input_tensor) == id(output_tensor):
        #     raise Exception("tp %d, pp %d, vp %d." % (
        #         mpu.get_tensor_model_parallel_rank(),
        #         mpu.get_pipeline_model_parallel_rank(),
        #         mpu.get_virtual_pipeline_model_parallel_rank(),
        #     ))
351
352
        # <<<

353
354
355
356
357
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

358
359
        return output_tensor

360
    def backward_step_helper(microbatch_id):
361
362
363
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
364
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
365
366
367
368
369
370
371
372
373
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
374
375
376
377
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
378
379
380
381
382

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
383
    input_tensors[0].append(
384
        p2p_communication.recv_forward(tensor_shape, timers=timers))
385
386
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
387
388

        # Determine if tensor should be received from previous stage.
389
390
391
392
393
394
395
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
396
397

        # Don't send tensor downstream if on last stage.
398
399
        if mpu.is_pipeline_last_stage():
            output_tensor = None
400
401
402

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
403
404
405
406
407
408
409
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
410
                p2p_communication.send_forward_backward_recv_forward_backward(
411
412
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
413
                        tensor_shape=tensor_shape,
414
415
416
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
417
            input_tensor = \
418
                p2p_communication.send_forward_recv_forward(
419
420
421
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
422
        input_tensors[next_forward_model_chunk_id].append(input_tensor)
423
        deallocate_output_tensor(output_tensor)
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
461
462
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
463
464
465
466
467
468
469
470
471
472

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
473
474
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
475

476
477
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
478
479
480
481
482
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
483
            p2p_communication.send_forward_backward_recv_forward_backward(
484
485
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
486
                    tensor_shape=tensor_shape, timers=timers)
487
        deallocate_output_tensor(output_tensor)
488

489
490
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
491
492
493
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
494
495
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
496

497
    # Run cooldown backward passes (flush out pipeline).
498
499
500
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
501
                p2p_communication.recv_backward(tensor_shape, timers=timers))
502
503
504
505
506
507
508
509
510
511
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
512
                p2p_communication.send_backward_recv_backward(
513
514
515
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
516
517
518
519

    return losses_reduced


520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
    if model_type == ModelType.encoder_and_decoder:
        if mpu.is_pipeline_stage_before_split(rank):
            # If next rank is after split, then need transpose for encoder_hidden_state.
            if mpu.is_pipeline_stage_before_split(rank+1):
                tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
            else:
                tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
        else:
            tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
    else:
        tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


614
615
616
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
617
618
619
620
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
621
    args = get_args()
622
623
    timers = get_timers()

624
625
626
627
628
629
630
631
632
633
634
635
636
637
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

638
639
640
641
642
643
644
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

645
646
647
648
649
650
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
651
652
653
654
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
655
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
656
657
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
658
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
659

660
661
662
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
663
            deallocate_output_tensor(output_tensor[0])
664
665
666
667
668

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
669
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
670
671
672
673
674
675
676
677

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
678
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
679
680

            if not last_iteration:
681
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
682

683
        else:
684
            output_tensor_grad = \
685
686
687
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
688

689
690
691
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
692
            deallocate_output_tensor(output_tensor[0])
693

694
695
696
697
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
698
699
700
701
702
703
704

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
705
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
706
            else:
707
                input_tensor = \
708
709
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
710
711
712
713
714
715
716

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

717
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
718
719
720
721
722

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

723
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
724
725

    return losses_reduced