schedules.py 27.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
from contextlib import contextmanager
17
import torch
18
from torch.autograd.variable import Variable
19
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
20
21

from megatron import get_args
22
from megatron import get_num_microbatches
23
24
from megatron import get_timers
from megatron import mpu
25
from megatron import p2p_communication
26
27
28
from megatron.utils import unwrap_model
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module
29
30
from megatron.model import ModelType

31

Jared Casper's avatar
Jared Casper committed
32
33
34
35
36
def get_forward_backward_func():
    args = get_args()
    if mpu.get_pipeline_model_parallel_world_size() > 1:
        if args.virtual_pipeline_model_parallel_size is not None:
            forward_backward_func = forward_backward_pipelining_with_interleaving
Lawrence McAfee's avatar
Lawrence McAfee committed
37
38
39
40
41
42
43
            assert get_num_microbatches() % \
                args.pipeline_model_parallel_size == 0, \
                'number of microbatches (%d) is not divisible by pipeline-' \
                'model-parallel-size (%d) when using interleaved schedule' % (
                    get_num_microbatches(),
                    args.pipeline_model_parallel_size,
                )
Jared Casper's avatar
Jared Casper committed
44
45
46
47
48
49
        else:
            forward_backward_func = forward_backward_pipelining_without_interleaving
    else:
        forward_backward_func = forward_backward_no_pipelining
    return forward_backward_func

50
51
def deallocate_output_tensor(out):
    '''Pseudo-deallocate (i.e., set to scalar) the output tensor's '.data' field.
52
53
54
55
56

    This method should be called right after the output tensor has been
    sent to the next pipeline stage. At this point, the output tensor is
    only useful for its '.grad_fn' field, and not its '.data'.
    '''
Lawrence McAfee's avatar
Lawrence McAfee committed
57
    if out is None:
58
        return
59
60
61
62
63
64
65
66
67
    assert isinstance(out, torch.Tensor), \
        "expected Tensor, found %s." % type(out).__name__
    assert out._base is None, \
        "counter-productive to free a view of another tensor."
    out.data = torch.empty(
        (1,),
        device = out.device,
        dtype = out.dtype,
    )
68
        
69
def custom_backward(output, grad_output):
70
71
    '''Directly call C++ autograd engine.

72
    To make the 'deallocate_output_tensor' (above) optimization work, the C++
73
74
75
76
    autograd engine must be called directly, bypassing Pytorch's
    torch.autograd.backward. Pytorch's 'backward' checks that the output and
    grad have the same shape, while C++'s 'backward' does not.
    '''
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

    assert output.numel() == 1, \
        "output should be pseudo-'freed' in schedule, to optimize memory"
    assert isinstance(output, torch.Tensor), \
        "output == '%s'." % type(output).__name__
    assert isinstance(grad_output, (torch.Tensor, type(None))), \
        "grad_output == '%s'." % type(grad_output).__name__

    # Handle scalar output
    if grad_output is None:
        assert output.numel() == 1, "implicit grad requires scalar output."
        grad_output = torch.ones_like(
            output,
            memory_format = torch.preserve_format,
        )

    # Call c++ engine [ see torch/csrc/autograd/python_engine.cpp ]
    Variable._execution_engine.run_backward(
        tensors = (output,),
        grad_tensors = (grad_output,),
        keep_graph = False,
        create_graph = False,
        inputs = tuple(),
        allow_unreachable=True,
        accumulate_grad=True,
    )
103
        
Jared Casper's avatar
Jared Casper committed
104

105
def forward_step(forward_step_func, data_iterator, model, input_tensor, losses_reduced):
106
107
108
109
110
111
    """Forward step for passed-in model.

    If first stage, input tensor is obtained from data_iterator, otherwise
    passed-in input_tensor is used.

    Returns output tensor."""
112
    args = get_args()
113
114
115
    timers = get_timers()

    timers('forward-compute').start()
116
117
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
118
119
120
121
122
123

    unwrap_output_tensor = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_output_tensor = True

124
    unwrapped_model.set_input_tensor(input_tensor)
125
    output_tensor, loss_func = forward_step_func(data_iterator, model)
126
    if mpu.is_pipeline_last_stage():
127
        output_tensor = loss_func(output_tensor)
128
129
130
131
132
        loss, loss_reduced = output_tensor
        output_tensor = loss / get_num_microbatches()
        losses_reduced.append(loss_reduced)
    timers('forward-compute').stop()

133
134
135
    # If T5 model (or other model with encoder and decoder)
    # and in decoder stack, then send encoder_hidden_state
    # downstream as well.
136
137
138
139
140
141
    if mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        return [output_tensor, input_tensor[-1]]
    if unwrap_output_tensor:
        return output_tensor
    return [output_tensor]
142
143
144


def backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad):
145
146
147
148
149
150
151
    """Backward step through passed-in output tensor.

    If last stage, output_tensor_grad is None, otherwise gradient of loss
    with respect to stage's output tensor.

    Returns gradient of loss with respect to input tensor (None if first
    stage)."""
152
153
154
155

    # NOTE: This code currently can handle at most one skip connection. It
    # needs to be modified slightly to support arbitrary numbers of skip
    # connections.
156
157
158
159
160
161
    args = get_args()

    timers = get_timers()
    timers('backward-compute').start()

    # Retain the grad on the input_tensor.
162
163
164
165
166
167
168
169
170
171
172
173
    unwrap_input_tensor_grad = False
    if not isinstance(input_tensor, list):
        input_tensor = [input_tensor]
        unwrap_input_tensor_grad = True
    for x in input_tensor:
        if x is not None:
            x.retain_grad()

    if not isinstance(output_tensor, list):
        output_tensor = [output_tensor]
    if not isinstance(output_tensor_grad, list):
        output_tensor_grad = [output_tensor_grad]
174
175

    # Backward pass.
176
177
    if output_tensor_grad[0] is None:
        output_tensor = optimizer.scale_loss(output_tensor[0])
178
    custom_backward(output_tensor[0], output_tensor_grad[0])
179
180

    # Collect the grad of the input_tensor.
181
    input_tensor_grad = [None]
182
    if input_tensor is not None:
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
        input_tensor_grad = []
        for x in input_tensor:
            if x is None:
                input_tensor_grad.append(None)
            else:
                input_tensor_grad.append(x.grad)

    # Handle single skip connection if it exists (encoder_hidden_state in
    # model with encoder and decoder).
    if mpu.get_pipeline_model_parallel_world_size() > 1 and \
            mpu.is_pipeline_stage_after_split() and \
            args.model_type == ModelType.encoder_and_decoder:
        if output_tensor_grad[1] is not None:
            input_tensor_grad[-1].add_(output_tensor_grad[1])
    if unwrap_input_tensor_grad:
        input_tensor_grad = input_tensor_grad[0]
199
200
201
202
203
204

    timers('backward-compute').stop()

    return input_tensor_grad


205
206
207
208
209
210
211
212
@contextmanager
def dummy_handler():
    try:
        yield
    finally:
        pass


213
214
def forward_backward_no_pipelining(forward_step_func, data_iterator, model,
                                   optimizer, timers, forward_only):
215
216
217
218
    """Run forward and backward passes with no pipeline parallelism
    (no inter-stage communication).

    Returns dictionary with losses."""
219
220
221
    assert len(model) == 1
    model = model[0]

222
223
224
225
    context_handler = dummy_handler
    if isinstance(model, torchDDP):
        context_handler = model.no_sync

226
    losses_reduced = []
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    input_tensor, output_tensor_grad = None, None
    with context_handler():
        for i in range(get_num_microbatches() - 1):
            output_tensor = forward_step(forward_step_func, data_iterator, model,
                                         input_tensor, losses_reduced)
            if not forward_only:
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

    # Run computation for last microbatch out of context handler (want to
    # synchronize gradients).
    output_tensor = forward_step(forward_step_func, data_iterator, model,
                                 input_tensor, losses_reduced)
    if not forward_only:
        backward_step(optimizer, input_tensor, output_tensor, output_tensor_grad)
242
243
244
245
246
247

    return losses_reduced


def forward_backward_pipelining_with_interleaving(forward_step_func, data_iterator, model,
                                                  optimizer, timers, forward_only):
248
249
250
251
    """Run interleaved 1F1B schedule (model split into model chunks), with
    communication between pipeline stages as needed.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
252
253
254
255
256
257
258
    input_tensors = [[] for _ in range(len(model))]
    output_tensors = [[] for _ in range(len(model))]
    losses_reduced = []
    if not forward_only:
        output_tensor_grads = [[] for _ in range(len(model))]

    pipeline_parallel_size = mpu.get_pipeline_model_parallel_world_size()
259
    pipeline_parallel_rank = mpu.get_pipeline_model_parallel_rank()
260

261
262
263
    args = get_args()
    tensor_shape = (args.seq_length, args.micro_batch_size, args.hidden_size)

264
265
266
267
268
269
270
    # Compute number of warmup and remaining microbatches.
    num_model_chunks = len(model)
    num_microbatches = get_num_microbatches() * num_model_chunks
    all_warmup_microbatches = False
    if forward_only:
        num_warmup_microbatches = num_microbatches
    else:
271
272
273
274
275
276
        # Run all forward passes and then all backward passes if number of
        # microbatches is just the number of pipeline stages.
        # Otherwise, perform (num_model_chunks-1)*pipeline_parallel_size on
        # all workers, followed by more microbatches after depending on
        # stage ID (more forward passes for earlier stages, later stages can
        # immediately start with 1F1B).
277
278
279
280
281
        if get_num_microbatches() == pipeline_parallel_size:
            num_warmup_microbatches = num_microbatches
            all_warmup_microbatches = True
        else:
            num_warmup_microbatches = \
282
                (pipeline_parallel_size - pipeline_parallel_rank - 1) * 2
283
284
285
286
            num_warmup_microbatches += (
                num_model_chunks - 1) * pipeline_parallel_size
            num_warmup_microbatches = min(num_warmup_microbatches,
                                          num_microbatches)
287
288
289
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

290
    def get_model_chunk_id(microbatch_id, forward):
291
        """Helper method to get the model chunk ID given the iteration number."""
292
293
        microbatch_id_in_group = microbatch_id % (pipeline_parallel_size * num_model_chunks)
        model_chunk_id = microbatch_id_in_group // pipeline_parallel_size
294
        if not forward:
295
296
            model_chunk_id = (num_model_chunks - model_chunk_id - 1)
        return model_chunk_id
297

298
    def forward_step_helper(microbatch_id):
299
300
301
        """Helper method to run forward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        forward_step())."""
302
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=True)
303
304
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

305
        # forward step
306
        if mpu.is_pipeline_first_stage():
307
308
            if len(input_tensors[model_chunk_id]) == \
                    len(output_tensors[model_chunk_id]):
309
310
                input_tensors[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id][-1]
311
312
        output_tensor = forward_step(forward_step_func,
                                     data_iterator[model_chunk_id],
313
314
315
316
                                     model[model_chunk_id],
                                     input_tensor, losses_reduced)
        output_tensors[model_chunk_id].append(output_tensor)

317
318
319
320
321
        # if forward-only, no need to save tensors for a backward pass
        if forward_only:
            input_tensors[model_chunk_id].pop()
            output_tensors[model_chunk_id].pop()

322
323
        return output_tensor

324
    def backward_step_helper(microbatch_id):
325
326
327
        """Helper method to run backward step with model split into chunks
        (run set_virtual_pipeline_model_parallel_rank() before calling
        backward_step())."""
328
        model_chunk_id = get_model_chunk_id(microbatch_id, forward=False)
329
330
331
332
333
334
335
336
337
        mpu.set_virtual_pipeline_model_parallel_rank(model_chunk_id)

        if mpu.is_pipeline_last_stage():
            if len(output_tensor_grads[model_chunk_id]) == 0:
                output_tensor_grads[model_chunk_id].append(None)
        input_tensor = input_tensors[model_chunk_id].pop(0)
        output_tensor = output_tensors[model_chunk_id].pop(0)
        output_tensor_grad = output_tensor_grads[model_chunk_id].pop(0)
        input_tensor_grad = \
338
339
340
341
            backward_step(optimizer,
                          input_tensor,
                          output_tensor,
                          output_tensor_grad)
342
343
344
345
346

        return input_tensor_grad

    # Run warmup forward passes.
    mpu.set_virtual_pipeline_model_parallel_rank(0)
347
    input_tensors[0].append(
348
        p2p_communication.recv_forward(tensor_shape, timers=timers))
349
350
    for k in range(num_warmup_microbatches):
        output_tensor = forward_step_helper(k)
351
352

        # Determine if tensor should be received from previous stage.
353
354
355
356
357
358
359
        next_forward_model_chunk_id = get_model_chunk_id(k+1, forward=True)
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            if next_forward_model_chunk_id == 0:
                recv_prev = False
        if k == (num_microbatches - 1):
            recv_prev = False
360
361

        # Don't send tensor downstream if on last stage.
362
363
        if mpu.is_pipeline_last_stage():
            output_tensor = None
364
365
366

        # Send and receive tensors as appropriate (send tensors computed
        # in this iteration; receive tensors for next iteration).
367
368
369
370
371
372
373
        if k == (num_warmup_microbatches - 1) and not forward_only and \
                not all_warmup_microbatches:
            input_tensor_grad = None
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                recv_next = False
            input_tensor, output_tensor_grad = \
374
                p2p_communication.send_forward_backward_recv_forward_backward(
375
376
                        output_tensor, input_tensor_grad,
                        recv_prev=recv_prev, recv_next=recv_next,
377
                        tensor_shape=tensor_shape,
378
379
380
                        timers=timers)
            output_tensor_grads[num_model_chunks-1].append(output_tensor_grad)
        else:
381
            input_tensor = \
382
                p2p_communication.send_forward_recv_forward(
383
384
385
                    output_tensor, recv_prev=recv_prev,
                    tensor_shape=tensor_shape,
                    timers=timers)
386
        input_tensors[next_forward_model_chunk_id].append(input_tensor)
387
        deallocate_output_tensor(output_tensor)
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424

    # Run 1F1B in steady state.
    for k in range(num_microbatches_remaining):
        # Forward pass.
        forward_k = k + num_warmup_microbatches
        output_tensor = forward_step_helper(forward_k)

        # Backward pass.
        backward_k = k
        input_tensor_grad = backward_step_helper(backward_k)

        # Send output_tensor and input_tensor_grad, receive input_tensor
        # and output_tensor_grad.

        # Determine if current stage has anything to send in either direction,
        # otherwise set tensor to None.
        forward_model_chunk_id = get_model_chunk_id(forward_k, forward=True)
        mpu.set_virtual_pipeline_model_parallel_rank(forward_model_chunk_id)
        if mpu.is_pipeline_last_stage():
            output_tensor = None

        backward_model_chunk_id = get_model_chunk_id(backward_k, forward=False)
        mpu.set_virtual_pipeline_model_parallel_rank(backward_model_chunk_id)
        if mpu.is_pipeline_first_stage():
            input_tensor_grad = None

        # Determine if peers are sending, and where in data structure to put
        # received tensors.
        recv_prev = True
        if mpu.is_pipeline_first_stage(ignore_virtual=True):
            # First stage is ahead of last stage by (pipeline_parallel_size - 1).
            next_forward_model_chunk_id = get_model_chunk_id(
                forward_k - (pipeline_parallel_size - 1), forward=True)
            if next_forward_model_chunk_id == (num_model_chunks - 1):
                recv_prev = False
            next_forward_model_chunk_id += 1
        else:
425
426
            next_forward_model_chunk_id = get_model_chunk_id(forward_k + 1,
                                                             forward=True)
427
428
429
430
431
432
433
434
435
436

        recv_next = True
        if mpu.is_pipeline_last_stage(ignore_virtual=True):
            # Last stage is ahead of first stage by (pipeline_parallel_size - 1).
            next_backward_model_chunk_id = get_model_chunk_id(
                backward_k - (pipeline_parallel_size - 1), forward=False)
            if next_backward_model_chunk_id == 0:
                recv_next = False
            next_backward_model_chunk_id -= 1
        else:
437
438
            next_backward_model_chunk_id = get_model_chunk_id(backward_k + 1,
                                                              forward=False)
439

440
441
        # If last iteration, don't receive; we already received one extra
        # before the start of the for loop.
442
443
444
445
446
        if k == (num_microbatches_remaining - 1):
            recv_prev = False

        # Communicate tensors.
        input_tensor, output_tensor_grad = \
447
            p2p_communication.send_forward_backward_recv_forward_backward(
448
449
                    output_tensor, input_tensor_grad,
                    recv_prev=recv_prev, recv_next=recv_next,
450
                    tensor_shape=tensor_shape, timers=timers)
451
        deallocate_output_tensor(output_tensor)
452

453
454
        # Put input_tensor and output_tensor_grad in data structures in the
        # right location.
455
456
457
        if recv_prev:
            input_tensors[next_forward_model_chunk_id].append(input_tensor)
        if recv_next:
458
459
            output_tensor_grads[next_backward_model_chunk_id].append(
                output_tensor_grad)
460

461
    # Run cooldown backward passes (flush out pipeline).
462
463
464
    if not forward_only:
        if all_warmup_microbatches:
            output_tensor_grads[num_model_chunks-1].append(
465
                p2p_communication.recv_backward(tensor_shape, timers=timers))
466
467
468
469
470
471
472
473
474
475
        for k in range(num_microbatches_remaining, num_microbatches):
            input_tensor_grad = backward_step_helper(k)
            next_backward_model_chunk_id = get_model_chunk_id(k+1, forward=False)
            recv_next = True
            if mpu.is_pipeline_last_stage(ignore_virtual=True):
                if next_backward_model_chunk_id == (num_model_chunks - 1):
                    recv_next = False
            if k == (num_microbatches - 1):
                recv_next = False
            output_tensor_grads[next_backward_model_chunk_id].append(
476
                p2p_communication.send_backward_recv_backward(
477
478
479
                    input_tensor_grad, recv_next=recv_next,
                    tensor_shape=tensor_shape,
                    timers=timers))
480
481
482
483

    return losses_reduced


484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
def get_tensor_shapes(rank, model_type):
    # Determine right tensor sizes (based on position of rank with respect to split
    # rank) and model size.
    # Send two tensors if model is T5 and rank is in decoder stage:
    #     first tensor is decoder (pre-transpose),
    #     second tensor is encoder (post-transpose).
    # If model is T5 and rank is at the boundary:
    #     send one tensor (post-transpose from encoder).
    # Otherwise, send one tensor (pre-transpose).
    args = get_args()
    tensor_shapes = []
    if model_type == ModelType.encoder_and_decoder:
        if mpu.is_pipeline_stage_before_split(rank):
            # If next rank is after split, then need transpose for encoder_hidden_state.
            if mpu.is_pipeline_stage_before_split(rank+1):
                tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
            else:
                tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
        else:
            tensor_shapes.append((args.decoder_seq_length, args.micro_batch_size, args.hidden_size))
            tensor_shapes.append((args.micro_batch_size, args.seq_length, args.hidden_size))
    else:
        tensor_shapes.append((args.seq_length, args.micro_batch_size, args.hidden_size))
    return tensor_shapes


def recv_forward(tensor_shapes, timers):
    input_tensors = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            input_tensors.append(None)
        else:
            input_tensors.append(p2p_communication.recv_forward(tensor_shape,
                                                                timers=timers))
    return input_tensors


def recv_backward(tensor_shapes, timers):
    output_tensor_grads = []
    for tensor_shape in tensor_shapes:
        if tensor_shape is None:
            output_tensor_grads.append(None)
        else:
            output_tensor_grads.append(p2p_communication.recv_backward(tensor_shape,
                                                                       timers=timers))
    return output_tensor_grads


def send_forward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_forward(output_tensor, tensor_shape, timers=timers)


def send_backward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            continue
        p2p_communication.send_backward(input_tensor_grad, tensor_shape, timers=timers)


def send_forward_recv_backward(output_tensors, tensor_shapes, timers):
    if not isinstance(output_tensors, list):
        output_tensors = [output_tensors]
    output_tensor_grads = []
    for (output_tensor, tensor_shape) in zip(output_tensors, tensor_shapes):
        if tensor_shape is None:
            output_tensor_grads.append(None)
            continue
        output_tensor_grad = p2p_communication.send_forward_recv_backward(
                output_tensor, tensor_shape, timers=timers)
        output_tensor_grads.append(output_tensor_grad)
    return output_tensor_grads


def send_backward_recv_forward(input_tensor_grads, tensor_shapes, timers):
    if not isinstance(input_tensor_grads, list):
        input_tensor_grads = [input_tensor_grads]
    input_tensors = []
    for (input_tensor_grad, tensor_shape) in zip(input_tensor_grads, tensor_shapes):
        if tensor_shape is None:
            input_tensors.append(None)
            continue
        input_tensor = p2p_communication.send_backward_recv_forward(
                input_tensor_grad, tensor_shape, timers=timers)
        input_tensors.append(input_tensor)
    return input_tensors


578
579
580
def forward_backward_pipelining_without_interleaving(forward_step_func, data_iterator,
                                                     model, optimizer, timers,
                                                     forward_only):
581
582
583
584
    """Run non-interleaved 1F1B schedule, with communication between pipeline
    stages.

    Returns dictionary with losses if the last stage, empty dict otherwise."""
585
    args = get_args()
586
587
    timers = get_timers()

588
589
590
591
592
593
594
595
596
597
598
599
600
601
    assert len(model) == 1
    model = model[0]

    # Compute number of warmup microbatches.
    num_microbatches = get_num_microbatches()
    num_warmup_microbatches = \
        (mpu.get_pipeline_model_parallel_world_size() -
         mpu.get_pipeline_model_parallel_rank() - 1)
    num_warmup_microbatches = min(
        num_warmup_microbatches,
        num_microbatches)
    num_microbatches_remaining = \
        num_microbatches - num_warmup_microbatches

602
603
604
605
606
607
608
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    model_type = unwrapped_model.model_type
    rank = mpu.get_pipeline_model_parallel_rank()
    recv_tensor_shapes = get_tensor_shapes(rank-1, model_type)
    send_tensor_shapes = get_tensor_shapes(rank, model_type)

609
610
611
612
613
614
    # Input, output tensors only need to be saved when doing backward passes
    input_tensors = None
    output_tensors = None
    if not forward_only:
        input_tensors = []
        output_tensors = []
615
616
617
618
    losses_reduced = []

    # Run warmup forward passes.
    for i in range(num_warmup_microbatches):
619
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
620
621
        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
622
        send_forward(output_tensor, send_tensor_shapes, timers=timers)
623

624
625
626
        if not forward_only:
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
627
            deallocate_output_tensor(output_tensor[0])
628
629
630
631
632

    # Before running 1F1B, need to receive first forward tensor.
    # If all microbatches are run in warmup / cooldown phase, then no need to
    # receive this tensor here.
    if num_microbatches_remaining > 0:
633
        input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
634
635
636
637
638
639
640
641

    # Run 1F1B in steady state.
    for i in range(num_microbatches_remaining):
        last_iteration = (i == (num_microbatches_remaining - 1))

        output_tensor = forward_step(forward_step_func, data_iterator, model,
                                     input_tensor, losses_reduced)
        if forward_only:
642
            send_forward(output_tensor, send_tensor_shapes, timers=timers)
643
644

            if not last_iteration:
645
                input_tensor = recv_forward(recv_tensor_shapes, timers=timers)
646

647
        else:
648
            output_tensor_grad = \
649
650
651
                send_forward_recv_backward(output_tensor,
                                           send_tensor_shapes,
                                           timers=timers)
652

653
654
655
            # Add input_tensor and output_tensor to end of list.
            input_tensors.append(input_tensor)
            output_tensors.append(output_tensor)
656
            deallocate_output_tensor(output_tensor[0])
657

658
659
660
661
            # Pop input_tensor and output_tensor from the start of the list for
            # the backward pass.
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)
662
663
664
665
666
667
668

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

            if last_iteration:
                input_tensor = None
669
                send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
670
            else:
671
                input_tensor = \
672
673
                    send_backward_recv_forward(
                        input_tensor_grad, recv_tensor_shapes, timers=timers)
674
675
676
677
678
679
680

    # Run cooldown backward passes.
    if not forward_only:
        for i in range(num_warmup_microbatches):
            input_tensor = input_tensors.pop(0)
            output_tensor = output_tensors.pop(0)

681
            output_tensor_grad = recv_backward(send_tensor_shapes, timers=timers)
682
683
684
685
686

            input_tensor_grad = \
                backward_step(optimizer, input_tensor, output_tensor,
                              output_tensor_grad)

687
            send_backward(input_tensor_grad, recv_tensor_shapes, timers=timers)
688
689

    return losses_reduced