text_generation_utils.py 17.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Utilities for generating text."""
17

18
import copy
Mohammad's avatar
Mohammad committed
19
20
21
22
import json
import os
import time

23
24
25
import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
29
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
31

32
33
34
35
36
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible?
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module

37
38
39
40
def get_batch(context_tokens):
    """Generate batch from context tokens."""
    args = get_args()
    tokenizer = get_tokenizer()
41

42
    # Move to GPU.
43
44
    tokens = context_tokens.contiguous().cuda()
    
45
46
    # Get the attention mask and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
47
        tokens,
48
        tokenizer.eod,
49
        args.reset_position_ids,
50
        args.reset_attention_mask,
51
        args.eod_mask_loss)
52

53
54
    return tokens, attention_mask, position_ids

55

56
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
57
58
59
60
    """ This function has been mostly taken from huggingface conversational
     ai code at
         https://medium.com/huggingface/how-to-build-a-state-of-the-art-
              conversational-ai-with-transfer-learning-2d818ac26313 """
61
62

    if top_k > 0:
63
64
        # Remove all tokens with a probability less than the
        # last token of the top-k
65
66
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
67

68
    if top_p > 0.0:
69
70
71
72
73
        # Cconvert to 1D
        sorted_logits, sorted_indices = torch.sort(
            logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1),
                                        dim=-1)
74
75
76

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
77
78
79
80
        # Shift the indices to the right to keep also the first token
        # above the threshold
        sorted_indices_to_remove[..., 1:] \
            = sorted_indices_to_remove[..., :-1].clone()
81
        sorted_indices_to_remove[..., 0] = 0
82
83
84
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
85

86
87
    return logits

88
def pad_batch(batch, pad_id, max_len):
89
    context_lengths = []
90
    max_context_length = max([len(tokens) for tokens in batch])
91
92
    for tokens in batch:
        context_length = len(tokens)
93
94
        if context_length < max_context_length + max_len:
            tokens.extend([pad_id] * (max_context_length + max_len - context_length))
95
96
97
        context_lengths.append(context_length)
    return batch, context_lengths

98
def tokenize_batch(sentences, max_len):
99
100
101
102
    args = get_args()
    tokenizer = get_tokenizer()
    context_tokens = [tokenizer.tokenize(s) for s in sentences]
    context_tokens, context_lengths = pad_batch(context_tokens,
103
                                                tokenizer.eod, max_len)
104
105
106
107
    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)
    return context_tokens_tensor, context_length_tensor 

108
def send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
109
110
111
112
    """
    Needs to be synced up with receive_generate_info
    """
    # Send the sizes of the tensors
113
    input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), tokens_to_generate, all_probs]
114
115
116
117
118
119
120
121
122
123
124
    input_info_tensor = torch.cuda.LongTensor(input_info)
    torch.distributed.broadcast(input_info_tensor, 0)

    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)

def receive_generate_info():
    """
    Needs to be synced up with send_generate_info
    """
rprenger's avatar
rprenger committed
125
    input_info_tensor = torch.empty(4, dtype=torch.int64, device=torch.cuda.current_device())
126
127
128
    torch.distributed.broadcast(input_info_tensor, 0)
    batch_size = input_info_tensor[0].item()
    seq_len = input_info_tensor[1].item()
129
    tokens_to_generate = input_info_tensor[2].item()
rprenger's avatar
rprenger committed
130
    all_probs = input_info_tensor[3].item()
131
    
rprenger's avatar
rprenger committed
132
133
    context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.cuda.current_device())
    context_tokens_tensor = torch.empty(batch_size, seq_len, dtype=torch.int64, device=torch.cuda.current_device())
134
135
136
137
138
    
    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)
    
139
    return context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs
140

141
def synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, temperature):
142
143
144
145
146
    context_length = context_length_tensor.min().item()
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)
    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids,
147
                                                 tokens_to_generate,
148
149
                                                 all_probs,
                                                 temperature=temperature)
rprenger's avatar
rprenger committed
150
    for tokens, lengths, output_logits, full_logits in batch_token_iterator:
151
        context_length += 1
rprenger's avatar
rprenger committed
152
153
154
155
                
    if mpu.is_pipeline_last_stage():
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
mshoeybi's avatar
working  
mshoeybi committed
156
        print('last rank output size {} {} | \n'.format(output_logits.size(0), output_logits.size(1)))
rprenger's avatar
rprenger committed
157
        torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
158
        if all_probs:
mshoeybi's avatar
working  
mshoeybi committed
159
160
161
            print('last rank full size {} {} | \n'.format(full_logits.size(0),
                                                        full_logits.size(1),
                                                        full_logits.size(2)))
rprenger's avatar
rprenger committed
162
163
164
165
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            torch.distributed.broadcast(full_logits, src, group)

rprenger's avatar
rprenger committed
166
167
168
169
170
    else:
        if mpu.is_pipeline_first_stage():
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            output_logits = torch.empty(tokens.size(0), context_length-1, dtype=torch.float32, device=torch.device("cuda"))
mshoeybi's avatar
working  
mshoeybi committed
171
            print('first rank output size {} {} | \n'.format(output_logits.size(0), output_logits.size(1)))
rprenger's avatar
rprenger committed
172
            torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
173
174
            
            if all_probs:
175
                args = get_args()
rprenger's avatar
rprenger committed
176
177
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
mshoeybi's avatar
working  
mshoeybi committed
178
179
180
181
182
                full_logits = torch.empty(tokens.size(0), context_length-1, args.padded_vocab_size, dtype=torch.float32, device=torch.device("cuda"))
                print('first rank full size {} {} | \n'.format(full_logits.size(0),
                                                            full_logits.size(1),
                                                            full_logits.size(2)))
                
rprenger's avatar
rprenger committed
183
                torch.distributed.broadcast(full_logits, src, group)
184
    if tokens is not None:
rprenger's avatar
rprenger committed
185
        return tokens[:, :context_length], output_logits, full_logits 
186

187
def generate(model, sentences=None, tokens_to_generate=0, all_probs=False, temperature=1.0):
188
    model.eval()
189
    if torch.distributed.get_rank() == 0:
rprenger's avatar
rprenger committed
190
        context_tokens_tensor, context_length_tensor = tokenize_batch(sentences, tokens_to_generate)
191
        send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
192
    else:
193
        context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs = receive_generate_info()
194
195

    output = synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs, temperature)
rprenger's avatar
rprenger committed
196
    if output is not None:
rprenger's avatar
rprenger committed
197
        decode_tokens, output_logits, full_logits = output
198
        
199
200
201
        args = get_args()
        tokenizer = get_tokenizer()
        resp_sentences = []
rprenger's avatar
rprenger committed
202
        resp_sentences_seg = []
203
204
205
        
        decode_tokens = decode_tokens.cpu().numpy().tolist()
        for decode_token in decode_tokens:
206
            resp_sentences.append(tokenizer.detokenize(decode_token))
rprenger's avatar
rprenger committed
207
208
209
210
211
212
213
214
            words = []
            for token in decode_token:
                word = tokenizer.tokenizer.decoder[token]
                word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode('utf-8', errors='replace')
                words.append(word)
            resp_sentences_seg.append(words)

        output_logits = output_logits.cpu().numpy().tolist()
rprenger's avatar
rprenger committed
215
        if all_probs:
mshoeybi's avatar
working  
mshoeybi committed
216
            full_logits = full_logits.cpu().numpy() #.tolist()
217
       
218
        return resp_sentences, resp_sentences_seg, output_logits, full_logits, decode_tokens 
219

220
221
222
223
224
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
    """
    This function is here to provide an a matching API for a legacy task
    This implementation hasn't been tested yet to make sure it matches
    """
225
    #assert False, "Implementation untested"
226
227
228
229
    args = get_args()
    args.eos_id = eos_token_id
    raw_text_len = len(context)
    resp_sentences = generate(model, [context], max_gen_length)
230
231
    if resp_sentences:
        return resp_sentences[0][raw_text_len:]
232
233

def switch(val1, val2, boolean):
234
    boolean = boolean.type_as(val1)
Mohammad's avatar
Mohammad committed
235
    return (1 - boolean) * val1 + boolean * val2
236

237

238
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
239
240
                 set_inference_key_value_memory=False,
                 inference_max_sequence_len=None):
241

Jared Casper's avatar
Jared Casper committed
242
243
    # Hidden size changes when not using recompute, need to tell p2p_communicate
    # functions the correct size
244
245
246
    args = get_args()
    orig_seq_length = args.seq_length
    args.seq_length = tokens.shape[1]
247
    args.micro_batch_size = tokens.shape[0]
248

Jared Casper's avatar
Jared Casper committed
249
    input_tensor = recv_forward()
250
251

    # Forward pass through the model.
252
253
254
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    unwrapped_model.set_input_tensor(input_tensor)
255
256
257
258
259
    output_tensor = model(
        tokens, position_ids, attention_mask,
        tokentype_ids=tokentype_ids,
        set_inference_key_value_memory=set_inference_key_value_memory,
        inference_max_sequence_len=inference_max_sequence_len)
260

Jared Casper's avatar
Jared Casper committed
261
    send_forward(output_tensor)
262

263
    args.seq_length = orig_seq_length
264

265
266
267
    return output_tensor


268
269
def sample_sequence_batch(model, context_tokens, context_lengths,
                          attention_mask, position_ids,
270
                          tokens_to_generate, all_probs=False, type_ids=None, temperature=None):
271
272
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
273

274
275
276
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
277

Mostofa Patwary's avatar
Mostofa Patwary committed
278
279
        # added eos_id to support the function generate_samples_eval that passes
        # eos_id as an argument and needs termination when that id id found.
280
281
282
283
        if hasattr(args, 'eos_id'):
            eos_id = args.eos_id
        else:
            eos_id = tokenizer.eod
284
285
286
287
288
289

        counter = 0

        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
rprenger's avatar
rprenger committed
290
        output_logits = None
291
       
292
293
        # Generate enough tokens for the longest sequence
        maxlen = tokens_to_generate + context_lengths.max().item() 
294
295
296
       
        if maxlen > args.seq_length:
            maxlen = args.seq_length
297
        
Neel Kant's avatar
Neel Kant committed
298
        lengths = torch.ones([batch_size]).long().cuda() * maxlen
Mohammad's avatar
Mohammad committed
299

300
        while context_length < maxlen:
301
302
            types2use = None
            if counter == 0:
303
304
                # Allocate memory for the entire context.
                set_inference_key_value_memory = True
305
306
307
308
                tokens2use = tokens[:, :context_length]
                positions2use = position_ids[:, :context_length]
                if type_ids is not None:
                    types2use = type_ids[:, :context_length]
mshoeybi's avatar
mshoeybi committed
309
                attention_mask2use = attention_mask[..., :context_length, :context_length]
310
            else:
311
312
                # Set this to false so the memory is not reallocated.
                set_inference_key_value_memory = False
313
314
315
316
317
318
                tokens2use = tokens[:, context_length - 1].view(
                    batch_size, -1)
                positions2use = position_ids[:, context_length - 1].view(
                    batch_size, -1)
                if type_ids is not None:
                    types2use = type_ids[:, context_length - 1].view(
319
                        batch_size, -1)
mshoeybi's avatar
mshoeybi committed
320
                attention_mask2use = attention_mask[..., (context_length-1):context_length, :context_length]
321
322
323
324
            
            output = forward_step(
                model, tokens2use,
                positions2use,
mshoeybi's avatar
mshoeybi committed
325
                attention_mask2use,
326
327
328
329
                set_inference_key_value_memory=set_inference_key_value_memory,
                inference_max_sequence_len=maxlen,
                tokentype_ids=types2use)

330
331
            if mpu.is_pipeline_last_stage():
                assert output is not None
332
                output = output.float()
333
                logits = output[:, -1].view(batch_size, -1).contiguous()
334
335
336
337
338

                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
339
                    logits /= temperature
340
341
342
343
344
345
                    logits = top_k_logits(logits, top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)
                started = context_lengths <= context_length

346
347
348
349
                # Clamp the out of vocabulary tokens.
                tokenizer = get_tokenizer()
                prev = torch.clamp(prev, max=tokenizer.vocab_size - 1)

350
351
352
                new_tokens = switch(
                    tokens[:, context_length].view(-1), prev, started)
                tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
353
354
355
                
                if output_logits is None:
                    output_context = F.log_softmax(output[:, :context_length, :], 2)
356
                    indices = torch.unsqueeze(tokens[:, 1:context_length+1],2)
rprenger's avatar
rprenger committed
357
                    output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
358
359
                    if all_probs:
                        full_logits = output_context
rprenger's avatar
rprenger committed
360
                else:
rprenger's avatar
rprenger committed
361
                    output_context = F.log_softmax(output, 2)
rprenger's avatar
rprenger committed
362
                    indices = torch.unsqueeze(new_tokens,1).unsqueeze(2)
rprenger's avatar
rprenger committed
363
                    new_output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
364
365
366
                    
                    # TODO(rprenger) we're copying output_logits every time.  Should pre-allocate
                    output_logits = torch.cat([output_logits, new_output_logits],1)
rprenger's avatar
rprenger committed
367
368
                    if all_probs:
                        full_logits = torch.cat([full_logits, output_context], 1)
rprenger's avatar
rprenger committed
369
                
370
371
372
373
374
375
376
377
378
379
380
381
382
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
rprenger's avatar
rprenger committed
383
384
385
386
                if all_probs:
                    yield tokens, lengths, output_logits, full_logits
                else:
                    yield tokens, lengths, output_logits, None
387

388
            else:
389
390
391
392
393
394
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
395
                    yield tokens, None, None, None
396
                else:
rprenger's avatar
rprenger committed
397
                    yield None, None, None, None
398

399
400
401
402
                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
403

404
405
            context_length += 1
            counter += 1
406
407
            if done:
                break