README.md 38.8 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
Megatron ([1](https://arxiv.org/pdf/1909.08053.pdf), [2](https://arxiv.org/pdf/2104.04473.pdf), and [3](https://arxiv.org/pdf/2205.05198)) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel ([tensor](https://arxiv.org/pdf/1909.08053.pdf), [sequence](https://arxiv.org/pdf/2205.05198), and [pipeline](https://arxiv.org/pdf/2104.04473.pdf)), and multi-node pre-training of transformer based models such as [GPT](https://arxiv.org/abs/2005.14165), [BERT](https://arxiv.org/pdf/1810.04805.pdf), and [T5](https://arxiv.org/abs/1910.10683) using mixed precision.
Mohammad's avatar
Mohammad committed
2

3
4
5
6
7
8
9
10
11
Below are some of the projects where we have directly used Megatron:
* [BERT and GPT Studies Using Megatron](https://arxiv.org/pdf/1909.08053.pdf)
* [BioMegatron: Larger Biomedical Domain Language Model](https://www.aclweb.org/anthology/2020.emnlp-main.379.pdf)
* [End-to-End Training of Neural Retrievers for Open-Domain Question Answering](https://arxiv.org/abs/2101.00408)
* [Large Scale Multi-Actor Generative Dialog Modeling](https://www.aclweb.org/anthology/2020.acl-main.8.pdf)
* [Local Knowledge Powered Conversational Agents](https://arxiv.org/abs/2010.10150)
* [MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models](https://www.aclweb.org/anthology/2020.emnlp-main.226.pdf)
* [RACE Reading Comprehension Dataset Leaderboard](http://www.qizhexie.com/data/RACE_leaderboard.html)
* [Training Question Answering Models From Synthetic Data](https://www.aclweb.org/anthology/2020.emnlp-main.468.pdf)
Jared Casper's avatar
Jared Casper committed
12
13
14
15
* [Few-shot Instruction Prompts for Pretrained Language Models to Detect Social Biases](https://arxiv.org/abs/2112.07868)
* [Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models](https://arxiv.org/abs/2202.04173)
* [Using DeepSpeed and Megatron to Train Megatron-Turing NLG 530B, A Large-Scale Generative Language Model](https://arxiv.org/abs/2201.11990)
* [Multi-Stage Prompting for Knowledgeable Dialogue Generation](https://arxiv.org/abs/2203.08745)
Mohammad's avatar
Mohammad committed
16

Jared Casper's avatar
Jared Casper committed
17
18
Megatron is also used in [NeMo Megatron](https://developer.nvidia.com/nvidia-nemo#nemo-megatron), a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters.

Jared Casper's avatar
Jared Casper committed
19
Our codebase is capable of efficiently training very large (hundreds of billions of parameters) language models with both model and data parallelism. To demonstrate how the code scales with multiple GPUs and model sizes, we consider GPT models from 1 billion all the way to 1 trillion parameters. All models use a vocabulary size of 51,200 and a sequence length of 2048. We vary hidden size, number of attention heads, and number of layers to arrive at a specifc model size. As the model size increases, we also modestly increase the batch size. We leverage [NVIDIA's Selene supercomputer](https://www.top500.org/system/179842/) to perform scaling studies and use up to 3072 [A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for the largest model. Each cluster node has 8 NVIDIA 80GB A100 GPUs. The graph below shows that we scale nearly linear up to 1 trillion parameter models running on 3072 GPUs. Note that these results are from benchmark runs and these models were not trained to convergence; however, the FLOPs are measured for end-to-end training, i.e., includes all operations including data loading, optimization, and even logging.
20

Jared Casper's avatar
Jared Casper committed
21
![Scaling Graph](images/Achieved_petaFLOPs.png)
22

23
The following table shows both model (MFU) and hardware (HFU) FLOPs utilization for select configurations up to 1T parameters (see [our paper](https://arxiv.org/pdf/2205.05198) for a description of how these are calculated). As the model size increases, we achieve better GPU utilization and for the one trillion parameter model, we reach a MFU and HFU of 56.3% and 57.0%, respectively. Note that these numbers are also measured on benchmark runs and in this case are measured using a data parallel size of one. Data parallelism introduces some overhead due to the gradient all-reduce required between the data parallel groups. However, for large transformer models, this overhead is not large and can almost entirely eliminted by overlapping the gradient all-reduce with backpropagation.
24

Jared Casper's avatar
Jared Casper committed
25
26
27
28
29
30
| Model Size | Model FLOPs Utilization | Hardware FLOPs Utilization |
| :---: | :---: | :---: |
| 22B   | 41.5% | 43.7% |
| 175B  | 51.4% | 52.8% |
| 530B  | 56.0% | 57.0% |
| 1T    | 56.3% | 57.0% |
31

Mohammad's avatar
Mohammad committed
32
# Contents
Jared Casper's avatar
TOC fix  
Jared Casper committed
33
34
35
36
37
38
39
40
   * [Contents](#contents)
   * [Setup](#setup)
      * [Downloading Checkpoints](#downloading-checkpoints)
   * [Usage](#usage)
   * [Training](#training)
      * [Data Preprocessing](#data-preprocessing)
      * [BERT Pretraining](#bert-pretraining)
      * [GPT Pretraining](#gpt-pretraining)
41
42
      * [T5 Pretraining](#t5-pretraining)
      * [Distributed Pretraining](#distributed-pretraining)
43
      * [Activation Checkpointing and Recomputation](#activation-checkpointing-and-recomputation)
Lawrence McAfee's avatar
Lawrence McAfee committed
44
      * [Distributed Optimizer](#distributed-optimizer)
Jared Casper's avatar
TOC fix  
Jared Casper committed
45
46
47
48
49
50
51
52
53
54
55
56
      * [GPT-3 Example](#gpt-3-example)
   * [Evaluation and Tasks](#evaluation-and-tasks)
      * [GPT Text Generation](#gpt-text-generation)
      * [GPT Evaluation](#gpt-evaluation)
         * [WikiText Perplexity Evaluation](#wikitext-perplexity-evaluation)
         * [LAMBADA Cloze Accuracy](#lambada-cloze-accuracy)
      * [BERT Task Evaluation](#bert-task-evaluation)
         * [RACE Evaluation](#race-evaluation)
         * [MNLI Evaluation](#mnli-evaluation)
   * [Datasets](#datasets)
      * [Collecting Wikipedia Training Data](#collecting-wikipedia-training-data)
      * [Collecting GPT Webtext Data](#collecting-gpt-webtext-data)
57

Mohammad's avatar
Mohammad committed
58
# Setup
Maanu Grover's avatar
Maanu Grover committed
59
60
61
62
63
64
65
We strongly recommend using the latest release of [NGC's PyTorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) with DGX nodes. If you can't use this for some reason, use the latest pytorch, cuda, nccl, and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start) releases.  Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation, or downstream tasks.

You can launch an instance of the PyTorch container and mount Megatron, your dataset, and checkpoints with the following Docker commands:
```
docker pull nvcr.io/nvidia/pytorch:xx.xx-py3
docker run --gpus all -it --rm -v /path/to/megatron:/workspace/megatron -v /path/to/dataset:/workspace/dataset -v /path/to/checkpoints:/workspace/checkpoints nvcr.io/nvidia/pytorch:xx.xx-py3
```
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
66

Mohammad's avatar
Mohammad committed
67
## Downloading Checkpoints
68
69
70
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) and [GPT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints for use to evaluate or finetuning downstream tasks. To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).

Alternatively, you can directly download the checkpoints using:
Raul Puri's avatar
Raul Puri committed
71

Mohammad's avatar
Mohammad committed
72
<pre>
73
BERT-345M-uncased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0.1_uncased.zip
74
75
BERT-345M-cased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0.1_cased.zip
GPT-345M: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
Mohammad's avatar
Mohammad committed
76
</pre>
Raul Puri's avatar
Raul Puri committed
77

78
The models require vocabulary files to run. The BERT  WordPiece vocab file can be extracted from Google's pretrained BERT models: [uncased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt), [cased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt). The GPT [vocab file](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json) and [merge table](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt) can be downloaded directly.
Raul Puri's avatar
Raul Puri committed
79
80
81

# Usage

Mohammad's avatar
Mohammad committed
82
83
84
85
86
87
88
89
After installation, there are several possible workflows. The most comprehensive is:
1. Data preprocessing
2. Pretraining
3. Finetuning (Optional for zero-shot tasks)
4. Downstream task evaluation or text generation

However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.

90
We've provided several scripts for pretraining both BERT and GPT in [`examples`](./examples) directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT interactive text generation.
Mohammad's avatar
Mohammad committed
91
92
93

# Training
## Data Preprocessing
94
The training data requires preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
Mohammad's avatar
Mohammad committed
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
<pre>
{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}
</pre>

The name of the `text` field of the json can be changed by using the `--json-key` flag in [`preprocess_data.py`](./tools/preprocess_data.py) The other metadata are optional and are not used in training.

The loose json is then processed into a binary format for training. To convert the json into mmap, cached index file, or the lazy loader format use `preprocess_data.py`. Set the `--dataset-impl` flag to `mmap`, `cached`, or `lazy`, respectively (default is `mmap`). An example script to prepare data for BERT training is:
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-bert \
       --vocab bert-vocab.txt \
       --dataset-impl mmap \
       --tokenizer-type BertWordPieceLowerCase \
       --split-sentences
</pre>

The output will be two files named, in this case, `my-bert_text_sentence.bin` and `my-bert_text_sentence.idx`. The `--data-path` specified in later BERT training is the full path and new filename, but without the file extension.

Stas Bekman's avatar
Stas Bekman committed
115
116
117
118
119
For T5 use the same preprocessing as BERT, perhaps renaming it to:
<pre>
       --output-prefix my-t5 \
</pre>

120
Some minor modifications are required for GPT data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:
Mohammad's avatar
Mohammad committed
121
122
123
124
125
126
127
128
129
130
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-gpt2 \
       --vocab gpt2-vocab.json \
       --dataset-impl mmap \
       --tokenizer-type GPT2BPETokenizer \
       --merge-file gpt2-merges.txt \
       --append-eod
</pre>
Raul Puri's avatar
Raul Puri committed
131

132
Here the output files are named `my-gpt2_text_document.bin` and `my-gpt2_text_document.idx`. As before, in GPT training, use the longer name without the extension as `--data-path`.
Raul Puri's avatar
Raul Puri committed
133

Mohammad's avatar
Mohammad committed
134
135
136
137
Further command line arguments are described in the source file [`preprocess_data.py`](./tools/preprocess_data.py).

## BERT Pretraining

138

Maanu Grover's avatar
Maanu Grover committed
139
The [`examples/pretrain_bert.sh`](./examples/pretrain_bert.sh) script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at `--lr` to a minimum set by `--min-lr` over `--lr-decay-iters` iterations. The fraction of training iterations used for warmup is set by `--lr-warmup-fraction`. While this is single GPU training, the batch size specified by `--micro-batch-size` is a single forward-backward path batch-size and the code will perform gradient accumulation steps until it reaches `global-batch-size` which is the batch size per iteration. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with `--seed`). We use `train-iters` as the training iterations requested. Alternatively, one can provide `--train-samples` which is total number of samples to train on. If this option is present, then instead of providing `--lr-decay-iters`, one will need to provide `--lr-decay-samples`.
Mohammad's avatar
Mohammad committed
140
141
142
143
144

The logging, checkpoint-saving, and evaluation intervals are specified. Checkpointing the activations facilitates the training of larger models and/or batches. Note that the `--data-path` now includes the additional `_text_sentence` suffix added in preprocessing, but does not include the file extensions.

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

Maanu Grover's avatar
Maanu Grover committed
145
To run `examples/pretrain_bert.sh`, make any desired modifications including setting the environment variables for `CHECKPOINT_PATH`, `VOCAB_FILE`, and `DATA_PATH`. Make sure to set these variables to their paths in the container. Then launch the container with Megatron and necessary paths mounted (as explained in [Setup](#setup)) and run the example script.
Mohammad's avatar
Mohammad committed
146

147
148
## GPT Pretraining

149
The `examples/pretrain_gpt.sh` script runs single GPU 345M parameter GPT pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training.
Mohammad's avatar
Mohammad committed
150
151
152
153
154

It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a `json` vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the `--lr-decay-style` has been set to cosine decay.  Note that the `--data-path` now includes the additional `_text_document` suffix added in preprocessing, but does not include the file extensions.

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

Maanu Grover's avatar
Maanu Grover committed
155
156
`examples/pretrain_gpt.sh` can be launched the same way as described for BERT. Set the env vars and make any other modifications, launch the container with appropriate mounts, and run the script.

157
158
## T5 Pretraining

159
Very similar to BERT and GPT, the `examples/pretrain_t5.sh` script runs single GPU "base" (~220M parameter) T5 pretraining. The primary difference from BERT and GPT is the addition of the following arguments to accommodate the T5 architecture:
160
161
162
163
164
165

* `--kv-channels` sets the inner dimension of the "key" and "value" matrices of all attention mechanisms in the model. For BERT and GPT this defaults to the hidden size divided by the number of attention heads, but can be configured for T5.

* `--ffn-hidden-size` sets the hidden size in the feed-forward networks within a transformer layer. For BERT and GPT this defaults to 4 times the transformer hidden size, but can be configured for T5.

* `--encoder-seq-length` and `--decoder-seq-length` set the sequence length for the encoder and decoder separately.
Mohammad's avatar
Mohammad committed
166

Maanu Grover's avatar
Maanu Grover committed
167
All of the other arguments remain as they were for BERT and GPT pretraining. Run this example with the same steps described above for the other scripts.
168
169
170

## Distributed Pretraining

171
The `examples/pretrain_{bert,gpt,t5}_distributed.sh` scripts use the PyTorch distributed launcher for distributed training. As such, multi-node training can be achieved by properly setting environment variables. See the official PyTorch [documentation](https://pytorch.org/docs/stable/elastic/run.html#launcher-api) for further description of these [environment variables](https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization). By default, multi-node training uses the [nccl](https://developer.nvidia.com/nccl) distributed backend. A simple set of additional arguments and the use of the PyTorch distributed module with the `torchrun` elastic launcher (equivalent to `python -m torch.distributed.run`) are the only additional requirements to adopt distributed training. See any of `examples/pretrain_{bert,gpt,t5}_distributed.sh` for more details.
Mohammad's avatar
Mohammad committed
172

173
We use two types of parallelism: data and model parallelism. We facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.
Mohammad's avatar
Mohammad committed
174

175
176
177
Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use sequence parallelism specify `--sequence-parallel`, which requires tensor model parallel as it split among the same GPUs.

To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each).
Mohammad's avatar
Mohammad committed
178

179
<!-- The number of microbatches in a per-pipeline minibatch is controlled by the `--num-microbatches-in-minibatch` argument. With `WORLD_SIZE` GPUs, `TENSOR_MP_SIZE` tensor-model-parallel size, `PIPELINE_MP_SIZE` pipeline-model-parallel-size, `WORLD_SIZE`/(`TENSOR_MP_SIZE` * `PIPELINE_MP_SIZE`) GPUs will be used for data parallelism. The default values for `--tensor-model-parallel-size` and `--pipeline-model-parallel-size` is 1, which will not implement either form of model parallelism. -->
180

181
We have examples of how to use these two different forms of model parallelism the example scripts ending in `distributed_with_mp.sh`:
Mohammad's avatar
Mohammad committed
182
183
184

Other than these minor changes, the distributed training is identical to the training on a single GPU.

Deepak Narayanan's avatar
Deepak Narayanan committed
185
The interleaved pipelining schedule (more details in Section 2.2.2 of [our paper](https://arxiv.org/pdf/2104.04473.pdf)) can be enabled using the `--num-layers-per-virtual-pipeline-stage` argument, which controls the number of transformer layers in a virtual stage (by default with the non-interleaved schedule, each GPU will execute a single virtual stage with `NUM_LAYERS / PIPELINE_MP_SIZE` transformer layers). The total number of layers in the transformer model should be divisible by this argument value. Additionally, the number of microbatches in the pipeline (computed as `GLOBAL_BATCH_SIZE / (DATA_PARALLEL_SIZE * MICRO_BATCH_SIZE)`) should be divisible by the `PIPELINE_MP_SIZE` when using this schedule (this condition is checked in an assertion in the code). The interleaved schedule is not supported for pipelines with 2 stages (`PIPELINE_MP_SIZE=2`).
186

slym's avatar
slym committed
187
188
## Activation Checkpointing and Recomputation

189
190
191
To reduce GPU memory usage so deploy a large model to a training system, we support activation checkpointing and recomputation. We support two levels of recompute granularity: `selective` and `full`. Selective recomputation is the default and recommended in almost all cases. It saves the activations that take less space and are expensive to recompute and recomputes activations that take a lot of space but are relatively cheap to recompute (see [our paper](https://arxiv.org/pdf/2205.05198) for details). To enable selective activation recompute simply use `--recompute-activations`.

For cases where memory is very tight, `full` checkpointing saves just the inputs to a transformer layer, or a block of transformer layers, and recomputes everything else. To turn on full activation recompute use `--recompute-granularity full`. When using full activation recomputation, there are two methods: `uniform` and `block`, chosen using the `--recompute-method` argument.
slym's avatar
slym committed
192

193
* Uniform method uniformly divides the Transformer layers into groups of layers and stores the input activations of each group in the memory. The baseline group size is 1 and, in this case, the input activation of each Transformer layer is checkpointed. When the GPU memory is insufficient, increasing the number of layers per group reduces the memory usage thus enables running a bigger model. For example, when using the number of layers per group of 4, the input activation of each group of 4 Transformer layers is checkpointed.
slym's avatar
slym committed
194

195
* Block method checkpoints the input activations of a set number of individual Transformer layers per pipeline stage and do the rest of layers without any checkpointing. This method can be used to skip checkpointing some Transformer layers until the GPU memory is fully used, which is applicable only when there is unused GPU memory. Checkpointing fewer transformer layers avoids unnecessary activation recomputation in the backprop thus improves training performance. For example, when we specify 5 layers to checkpoint of 8 layers per pipeline stage, the input activations of only the first 5 Transformer layers are checkpointed and activation recomputation for the rest 3 layers is not needed in the backprop.
slym's avatar
slym committed
196
197


Lawrence McAfee's avatar
Lawrence McAfee committed
198
199
200
201
## Distributed Optimizer

Usage: `--use-distributed-optimizer`. Compatible with all model and data types.

Jared Casper's avatar
Jared Casper committed
202
The distributed optimizer is a memory savings technique, whereby the optimizer state is evenly distributed across data parallel ranks (versus the traditional method of replicating the optimizer state across data parallel ranks). As described in [ZeRO: Memory Optimizations Toward Training Trillion Parameter Models](https://arxiv.org/abs/1910.02054), our implementation distributes all optimizer state that does not overlap with the model state. For example, when using fp16 model params, the distributed optimizer maintains its own separate copy of fp32 main params & grads, which are distributed across DP ranks. When using bf16 model params, however, the distributed optimizer's fp32 main grads are the same as the model's fp32 grads, and so the grads in this case are not distributed (although the fp32 main params are still distributed, as they are separate from the bf16 model params).
Lawrence McAfee's avatar
Lawrence McAfee committed
203
204
205
206
207

Theoretical memory savings vary depending on the combination of the model's param dtype and grad dtype. In our implementation, the theoretical number of bytes per parameter is (where 'd' is the data parallel size):

| | Non-distributed optim | Distributed optim |
|-|-|-|
Lawrence McAfee's avatar
fixes.  
Lawrence McAfee committed
208
209
| fp16 param, fp16 grads | 20 | 4 + 16/d |
| bf16 param, fp32 grads | 18 | 6 + 12/d |
Lawrence McAfee's avatar
Lawrence McAfee committed
210
211
| fp32 param, fp32 grads | 16 | 8 + 8/d |

212
213
214
215
216
217
218
219
220
221
222
223
## FlashAttention

Usage: `--use-flash-attn`. Support attention head dimensions at most 128.

[FlashAttention](https://github.com/HazyResearch/flash-attention) is a fast and
memory-efficient algorithm to compute exact attention. It speeds up model
training and reduces memory requirement.

To install FlashAttention:
```sh
pip install flash-attn
```
Lawrence McAfee's avatar
Lawrence McAfee committed
224

225
226
## GPT-3 Example

227
In `examples/pretrain_gpt3_175B.sh` we have provided an example of how to configure Megatron to run [GPT-3](https://arxiv.org/abs/2005.14165) with 175 billion parameters on 1024 GPUs. The script is designed for [slurm](https://slurm.schedmd.com/documentation.html) with [pyxis](https://github.com/NVIDIA/pyxis) plugin but can be easily adopted to any other scheduler. It uses 8-way and 16-way tensor and pipeline parallelism, respectively. With options `global-batch-size 1536` and `rampup-batch-size 16 16 5859375`, the training will start with global batch size 16 and linearly increase the global batch size to 1536 over 5,859,375 samples with incrmeental steps 16. The training dataset can be either a single set or a multiple datasets combined with a set of weights.
228
229
230
231
232

With full global batch size of 1536 on 1024 A100 GPUs, each iteration takes around 32 seconds resulting in 138 teraFLOPs per GPU which is 44% of the theoretical peak FLOPs.


<!--
Neel Kant's avatar
Neel Kant committed
233
## REALM Pipeline
234
We are working on implementing the [REALM](https://arxiv.org/pdf/2002.08909.pdf) system. The following sections (will) reflect the three stages of training it. For now it's just the ICT code.
Neel Kant's avatar
Neel Kant committed
235
Loosely, they are pretraining the retriever modules, then jointly training the language model and the retriever, and then finetuning a question answering head on the language model with fixed retriever.
Neel Kant's avatar
Neel Kant committed
236
237

### Inverse Cloze Task (ICT) Pretraining
238
239
240
1. Have a corpus in loose JSON format with the intention of creating a collection of fixed-size blocks of text as the fundamental units of data. For a corpus like Wikipedia, this will mean multiple sentences per block but also multiple blocks per document.
Run `tools/preprocess_data.py` to construct one or more indexed datasets with the `--split-sentences` argument to make sentences the basic unit. For the original REALM system, we construct two datasets, one with the title of every document, and another with the body.
Refer to the following script
Neel Kant's avatar
Neel Kant committed
241
242
<pre>
python preprocess_data.py \
Neel Kant's avatar
Neel Kant committed
243
    --input /path/to/corpus.json \
Neel Kant's avatar
Neel Kant committed
244
245
246
    --json-keys text title \
    --split-sentences \
    --tokenizer-type BertWordPieceLowerCase \
Neel Kant's avatar
Neel Kant committed
247
248
    --vocab-file /path/to/vocab.txt \
    --output-prefix corpus_indexed \
Neel Kant's avatar
Neel Kant committed
249
250
251
252
    --workers 5  # works well for 10 CPU cores. Scale up accordingly.
</pre>

2. Use a custom samples mapping function in place of `megatron/data/realm_dataset_utils.get_block_samples_mapping` if required. To do this, you will need to implement a new function in C++ inside of `megatron/data/helpers.cpp`. The samples mapping data structure is used to select the data that will constitute every training sample in advance of the training loop.
253
 The samples mapping is responsible for holding all of the required metadata needed to construct the sample from one or more indexed datasets. In REALM, the samples mapping contains the start and end sentence indices, as well as the document index (to find the correct title for a body) and a unique ID for every block.
Neel Kant's avatar
Neel Kant committed
254
255
3. Pretrain a BERT language model using `pretrain_bert.py`, with the sequence length equal to the block size in token ids. This model should be trained on the same indexed dataset that is used to supply the blocks for the information retrieval task.
In REALM, this is an uncased bert base model trained with the standard hyperparameters.
256
257
4. Use `pretrain_ict.py` to train an `ICTBertModel` which uses two BERT-based encoders to encode queries and blocks to perform retrieval with.
The script below trains the ICT model from REALM. It refrences a pretrained BERT model (step 3) in the `--bert-load` argument. The batch size used in the paper is 4096, so this would need to be run with data parallel world size 32.
Neel Kant's avatar
Neel Kant committed
258
<pre>
Neel Kant's avatar
Neel Kant committed
259
python pretrain_ict.py \
Neel Kant's avatar
Neel Kant committed
260
261
262
263
264
265
266
267
    --num-layers 12 \
    --num-attention-heads 12 \
    --hidden-size 768 \
    --batch-size 128 \
    --seq-length 256 \
    --max-position-embeddings 256 \
    --ict-head-size 128 \
    --train-iters 100000 \
268
    --activations-checkpoint-method uniform \
Neel Kant's avatar
Neel Kant committed
269
270
271
272
273
274
    --bert-load /path/to/pretrained_bert \
    --load checkpoints \
    --save checkpoints \
    --data-path /path/to/indexed_dataset \
    --titles-data-path /path/to/titles_indexed_dataset \
    --vocab-file /path/to/vocab.txt \
Neel Kant's avatar
Neel Kant committed
275
276
277
278
279
    --lr 0.0001 \
    --num-workers 2 \
    --lr-decay-style linear \
    --weight-decay 1e-2 \
    --clip-grad 1.0 \
280
    --lr-warmup-fraction .01 \
Neel Kant's avatar
Neel Kant committed
281
282
    --save-interval 3000 \
    --query-in-block-prob 0.1 \
Neel Kant's avatar
Neel Kant committed
283
    --fp16
284

Neel Kant's avatar
Neel Kant committed
285
286
</pre>

Neel Kant's avatar
Neel Kant committed
287
### Building an Index of Block Embeddings
288
289
After having trained an ICT model, you can now embed an entire dataset of blocks by creating a `BlockData` structure. After that has been saved, you can load it
and wrap it with a `FaissMIPSIndex` to do fast similarity search which is key in the learned information retrieval pipeline. The initial index can be built with the following script, meant to be run in an interactive session. It can leverage multiple GPUs on multiple nodes to index large datasets much more quickly.
Neel Kant's avatar
Neel Kant committed
290
291

<pre>
Neel Kant's avatar
Neel Kant committed
292
python tools/create_doc_index.py \
Neel Kant's avatar
Neel Kant committed
293
294
295
296
297
    --num-layers 12 \
    --hidden-size 768 \
    --ict-head-size 128 \
    --num-attention-heads 12 \
    --batch-size 128 \
298
    --activations-checkpoint-method uniform \
Neel Kant's avatar
Neel Kant committed
299
300
    --seq-length 256 \
    --max-position-embeddings 256 \
Neel Kant's avatar
Neel Kant committed
301
302
303
304
    --ict-load /path/to/pretrained_ict \
    --data-path /path/to/indexed_dataset \
    --titles-data-path /path/to/titles_indexed_dataset \
    --block-data-path embedded_blocks.pkl \
Neel Kant's avatar
Neel Kant committed
305
306
    --indexer-log-interval 1000 \
    --indexer-batch-size 128 \
Neel Kant's avatar
Neel Kant committed
307
    --vocab-file /path/to/vocab.txt \
Neel Kant's avatar
Neel Kant committed
308
309
310
311
    --num-workers 2 \
    --fp16
</pre>

312
313
-->

Mohammad's avatar
Mohammad committed
314
315
316
317
# Evaluation and Tasks

We provide several command line arguments, detailed in the scripts listed below, to handle various zero-shot and fine-tuned downstream tasks. However, you can also finetune your model from a pretrained checkpoint on other corpora as desired. To do so, simply add the `--finetune` flag and adjust the input files and training parameters within the original training script. The iteration count will be reset to zero, and the optimizer and internal state will be reinitialized. If the fine-tuning is interrupted for any reason, be sure to remove the `--finetune` flag before continuing, otherwise the training will start again from the beginning.

318
Because evaluation requires substantially less memory than training, it may be advantageous to merge a model trained in parallel for use on fewer GPUs in downstream tasks. The following script accomplishes this. This example reads in a GPT model with 4-way tensor and 4-way pipeline model parallelism and writes out a model with 2-way tensor and 2-way pipeline model parallelism.
Mohammad's avatar
Mohammad committed
319
320

<pre>
321
322
323
324
325
326
python tools/checkpoint_util.py \
        --model-type GPT \
        --load-dir checkpoints/gpt3_tp4_pp4 \
        --save-dir checkpoints/gpt3_tp2_pp2 \
        --target-tensor-parallel-size 2 \
        --target-pipeline-paralle-size 2
Mohammad's avatar
Mohammad committed
327
328

</pre>
Jared Casper's avatar
Jared Casper committed
329

330
Several downstream tasks are described for both GPT and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.
Mohammad's avatar
Mohammad committed
331

332
## GPT Text Generation
Mohammad's avatar
Mohammad committed
333

mshoeybi's avatar
mshoeybi committed
334
We have included a simple REST server to use for text generation in `tools/run_text_generation_server.py`. You run it much like you would start a pretraining job, specifying an appropriate pretrained checkpoint. There are also few optional parameters: `temperature`, `top-k`and `top-p`. See `--help` or the source file for more information. See [examples/run_text_generation_server_345M.sh](examples/run_text_generation_server_345M.sh) for an example of how to run the server.
335
336

Once the server is running you can use `tools/text_generation_cli.py` to query it, it takes one argument which is the host the server is running on.
Mohammad's avatar
Mohammad committed
337
338

<pre>
339
340
tools/text_generation_cli.py localhost
</pre>
Mohammad's avatar
Mohammad committed
341

342
You can also use CURL or any other tools to query the server directly:
Mohammad's avatar
Mohammad committed
343

344
345
<pre>
curl 'http://localhost:5000/api' -X 'PUT' -H 'Content-Type: application/json; charset=UTF-8'  -d '{"prompts":["Hello world"], "tokens_to_generate":1}'
Mohammad's avatar
Mohammad committed
346
347
</pre>

348
349
See [megatron/text_generation_server.py](megatron/text_generation_server.py) for more API options.

350
351
352
353
354
355
### Detoxify GPT via Self-generation
We include an example in `examples/detxoify_lm/` to detoxify language models by leveraging the generative power of language models.

See [examples/detxoify_lm/README.md](examples/detxoify_lm/README.md) for step-by-step tutorials on how to perform domain-adaptive training and detoxify LM using self-generated corpus. 


356
357
## GPT Evaluation
We include example scripts for GPT evaluation on WikiText perplexity evaluation and LAMBADA Cloze accuracy.
Mohammad's avatar
Mohammad committed
358
359
360
361

### WikiText Perplexity Evaluation
For even comparison with prior works, we evaluate perplexity on the word-level [WikiText-103 test dataset](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), and appropriately compute perplexity given the change in tokens when using our subword tokenizer.

Steven Steinke's avatar
Steven Steinke committed
362
We use the following command to run WikiText-103 evaluation on a 345M parameter model.
Mohammad's avatar
Mohammad committed
363
364
365
<pre>
TASK="WIKITEXT103"

366
VALID_DATA=&#60;wikitext path&#62;.txt
Mohammad's avatar
Mohammad committed
367
368
369
370
371
372
373
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m

COMMON_TASK_ARGS="--num-layers 24 \
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
374
375
                  --seq-length 1024 \
                  --max-position-embeddings 1024 \
Mohammad's avatar
Mohammad committed
376
377
378
379
380
381
382
                  --fp16 \
                  --vocab-file $VOCAB_FILE"

python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
383
       --tokenizer-type GPT2BPETokenizer \
Mohammad's avatar
Mohammad committed
384
385
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
386
       --micro-batch-size 8 \
387
       --activations-checkpoint-method uniform \
Mohammad's avatar
Mohammad committed
388
389
390
391
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>
392
393


Mohammad's avatar
Mohammad committed
394
### LAMBADA Cloze Accuracy
395
To compute LAMBADA cloze accuracy (the accuracy of predicting the last token given the preceding tokens) we utilize a detokenized, processed version of the [LAMBADA dataset](https://github.com/cybertronai/bflm/blob/master/lambada_test.jsonl).
396

397
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching. Make that `lambada` is part of the file path.
Raul Puri's avatar
Raul Puri committed
398

Mohammad's avatar
Mohammad committed
399
400
<pre>
TASK="LAMBADA"
401

402
VALID_DATA=&#60;lambada path&#62;.json
Mohammad's avatar
Mohammad committed
403
404
405
406
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS=&#60;same as those in <a href="#wikitext-perplexity-evaluation">WikiText Perplexity Evaluation</a> above&#62;
Raul Puri's avatar
Raul Puri committed
407

Mohammad's avatar
Mohammad committed
408
409
410
411
412
413
414
415
python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
       --tokenizer-type GPT2BPETokenizer \
       --strict-lambada \
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
416
       --micro-batch-size 8 \
417
       --activations-checkpoint-method uniform \
Mohammad's avatar
Mohammad committed
418
419
420
421
422
423
424
425
426
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>

Further command line arguments are described in the source file [`main.py`](./tasks/main.py)

## BERT Task Evaluation
### RACE Evaluation
427
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/). The `TRAIN_DATA` and `VALID_DATA` directory contain the RACE dataset as separate `.txt` files. Note that for RACE, the batch size is the number of RACE query's to evaluate. Since each RACE query has four samples, the effective batch size passed through the model will be four times the batch size specified on the command line.
Mohammad's avatar
Mohammad committed
428
429
430
431
432
433
434
435

<pre>
TRAIN_DATA="data/RACE/train/middle"
VALID_DATA="data/RACE/dev/middle \
            data/RACE/dev/high"
VOCAB_FILE=bert-vocab.txt
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
Steven Steinke's avatar
Steven Steinke committed
436
COMMON_TASK_ARGS="--num-layers 24 \
437
438
439
440
441
442
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
                  --seq-length 512 \
                  --max-position-embeddings 512 \
                  --fp16 \
                  --vocab-file $VOCAB_FILE"
Mohammad's avatar
Mohammad committed
443
444
445
446

COMMON_TASK_ARGS_EXT="--train-data $TRAIN_DATA \
                      --valid-data $VALID_DATA \
                      --pretrained-checkpoint $PRETRAINED_CHECKPOINT \
447
                      --activations-checkpoint-method uniform \
448
                      --save-interval 10000 \
Mohammad's avatar
Mohammad committed
449
                      --save $CHECKPOINT_PATH \
450
451
452
                      --log-interval 100 \
                      --eval-interval 1000 \
                      --eval-iters 10 \
Mohammad's avatar
Mohammad committed
453
454
455
456
457
458
459
460
                      --weight-decay 1.0e-1"

python tasks/main.py \
       --task RACE \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 3 \
461
       --micro-batch-size 4 \
Mohammad's avatar
Mohammad committed
462
       --lr 1.0e-5 \
463
       --lr-warmup-fraction 0.06
Mohammad's avatar
Mohammad committed
464
465
466
467
468
469
470
471
472
473
474
475
476
</pre>

### MNLI Evaluation
The following script finetunes the BERT model for evaluation with the [MultiNLI sentence pair corpus](https://www.nyu.edu/projects/bowman/multinli/). Because the matching tasks are quite similar, the script can be quickly tweaked to work with the [Quora Question Pairs](https://www.kaggle.com/quora/question-pairs-dataset) (QQP) dataset as well.

<pre>

TRAIN_DATA="data/glue_data/MNLI/train.tsv"
VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \
            data/glue_data/MNLI/dev_mismatched.tsv"
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m_mnli
477
478
COMMON_TASK_ARGS=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
Mohammad's avatar
Mohammad committed
479
480
481
482
483
484
485

python tasks/main.py \
       --task MNLI \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 5 \
486
       --micro-batch-size 8 \
Mohammad's avatar
Mohammad committed
487
       --lr 5.0e-5 \
488
       --lr-warmup-fraction 0.065
Mohammad's avatar
Mohammad committed
489
</pre>
Raul Puri's avatar
Raul Puri committed
490

Mohammad's avatar
Mohammad committed
491
# Datasets
492
We do not host any datasets for GPT or BERT training, however, we detail their collection so that our results may be reproduced.
493
494

## Collecting Wikipedia Training Data
495
We recommend following the Wikipedia data extraction process specified by Google research: "the recommended pre-processing is to download [the latest dump](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2), extract the text with [WikiExtractor.py](https://github.com/attardi/wikiextractor), and then apply any necessary cleanup to convert it into plain text."
496

497
We recommend using the `--json` argument when using WikiExtractor, which will dump the Wikipedia data into loose json format (one json per line), making it more manageable on the file system and also readily consumable by our codebase. We recommend further preprocessing this json dataset by nltk punctuation standardization. For BERT training, use the `--split-sentences` flag to `preprocess_data.py` as described [above](#data-preprocessing) to include sentence breaks in the produced index. If you'd like to use Wikipedia data for GPT training you should still clean it with nltk/spacy/ftfy, but do not use the `--split-sentences` flag.
498

499
## Collecting GPT Webtext Data
Mohammad's avatar
Mohammad committed
500
We utilize the publicly available [OpenWebText](https://github.com/eukaryote31/openwebtext) library from [jcpeterson](https://github.com/jcpeterson/openwebtext) and [eukaryote31's](https://github.com/eukaryote31/openwebtext) work to download urls. We then filtered, cleaned, and deduplicated all downloaded content according to the procedure described in our [openwebtext](./tools/openwebtext) directory. For reddit URLs corresponding to content up to October 2018 we arrived at approximately 37GB of content.