Commit b83477a3 authored by Jared Casper's avatar Jared Casper
Browse files

Update readme with sequence parallelism and selective activation recompute.

parent b44dca25
Megatron ([1](https://arxiv.org/pdf/1909.08053.pdf) and [2](https://arxiv.org/pdf/2104.04473.pdf)) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel (tensor and pipeline), and multi-node pre-training of transformer based models such as [GPT](https://arxiv.org/abs/2005.14165), [BERT](https://arxiv.org/pdf/1810.04805.pdf), and [T5](https://arxiv.org/abs/1910.10683) using mixed precision.
Megatron ([1](https://arxiv.org/pdf/1909.08053.pdf) and [2](https://arxiv.org/pdf/2104.04473.pdf)) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel ([tensor](https://arxiv.org/pdf/1909.08053.pdf), [sequence](https://arxiv.org/pdf/2205.05198), and [pipeline](https://arxiv.org/pdf/2104.04473.pdf)), and multi-node pre-training of transformer based models such as [GPT](https://arxiv.org/abs/2005.14165), [BERT](https://arxiv.org/pdf/1810.04805.pdf), and [T5](https://arxiv.org/abs/1910.10683) using mixed precision.
Below are some of the projects where we have directly used Megatron:
* [BERT and GPT Studies Using Megatron](https://arxiv.org/pdf/1909.08053.pdf)
......@@ -257,7 +257,9 @@ The `examples/pretrain_{bert,gpt,t5}_distributed.sh` scripts use the PyTorch dis
We use two types of parallelism: data and model parallelism. We facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.
Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each).
Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use sequence parallelism specify `--sequence-parallel`, which requires tensor model parallel as it split among the same GPUs.
To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each).
<!-- The number of microbatches in a per-pipeline minibatch is controlled by the `--num-microbatches-in-minibatch` argument. With `WORLD_SIZE` GPUs, `TENSOR_MP_SIZE` tensor-model-parallel size, `PIPELINE_MP_SIZE` pipeline-model-parallel-size, `WORLD_SIZE`/(`TENSOR_MP_SIZE` * `PIPELINE_MP_SIZE`) GPUs will be used for data parallelism. The default values for `--tensor-model-parallel-size` and `--pipeline-model-parallel-size` is 1, which will not implement either form of model parallelism. -->
......@@ -291,6 +293,7 @@ python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_<model>.py \
--data-path $DATA_PATH \
--tensor-model-parallel-size $TENSOR_MP_SIZE \
--pipeline-model-parallel-size $PIPELINE_MP_SIZE \
--sequence-parallel \
--DDP-impl torch
</pre>
......@@ -298,11 +301,13 @@ The interleaved pipelining schedule (more details in Section 2.2.2 of [our paper
## Activation Checkpointing and Recomputation
To reduce GPU memory usage so deploy a large model to a training system, we support activation checkpointing and recomputation. We use a Transformer layer as the unit of checkpointing because the activation size bloats in the middle of a Transformer layer so checkpointing the input of a Transformer layer is storage-efficient. We support two activation checkpointing methods: `uniform` and `block`.
To reduce GPU memory usage so deploy a large model to a training system, we support activation checkpointing and recomputation. We support two levels of recompute granularity: `selective` and `full`. Selective recomputation is the default and recommended in almost all cases. It saves the activations that take less space and are expensive to recompute and recomputes activations that take a lot of space but are relatively cheap to recompute (see [our paper](https://arxiv.org/pdf/2205.05198) for details). To enable selective activation recompute simply use `--recompute-activations`.
For cases where memory is very tight, `full` checkpointing saves just the inputs to a transformer layer, or a block of transformer layers, and recomputes everything else. To turn on full activation recompute use `--recompute-granularity full`. When using full activation recomputation, there are two methods: `uniform` and `block`, chosen using the `--recompute-method` argument.
Uniform method uniformly divides the Transformer layers into groups of layers and stores the input activations of each group in the memory. The baseline group size is 1 and, in this case, the input activation of each Transformer layer is checkpointed. When the GPU memory is insufficient, increasing the number of layers per group reduces the memory usage thus enables running a bigger model. For example, when using the number of layers per group of 4, the input activation of each group of 4 Transformer layers is checkpointed.
* Uniform method uniformly divides the Transformer layers into groups of layers and stores the input activations of each group in the memory. The baseline group size is 1 and, in this case, the input activation of each Transformer layer is checkpointed. When the GPU memory is insufficient, increasing the number of layers per group reduces the memory usage thus enables running a bigger model. For example, when using the number of layers per group of 4, the input activation of each group of 4 Transformer layers is checkpointed.
Block method checkpoints the input activations of a set number of individual Transformer layers per pipeline stage and do the rest of layers without any checkpointing. This method can be used to skip checkpointing some Transformer layers until the GPU memory is fully used, which is applicable only when there is unused GPU memory. Checkpointing fewer transformer layers avoids unnecessary activation recomputation in the backprop thus improves training performance. For example, when we specify 5 layers to checkpoint of 8 layers per pipeline stage, the input activations of only the first 5 Transformer layers are checkpointed and activation recomputation for the rest 3 layers is not needed in the backprop.
* Block method checkpoints the input activations of a set number of individual Transformer layers per pipeline stage and do the rest of layers without any checkpointing. This method can be used to skip checkpointing some Transformer layers until the GPU memory is fully used, which is applicable only when there is unused GPU memory. Checkpointing fewer transformer layers avoids unnecessary activation recomputation in the backprop thus improves training performance. For example, when we specify 5 layers to checkpoint of 8 layers per pipeline stage, the input activations of only the first 5 Transformer layers are checkpointed and activation recomputation for the rest 3 layers is not needed in the backprop.
## GPT-3 Example
......
......@@ -19,6 +19,7 @@ python -m torch.distributed.launch $DISTRIBUTED_ARGS \
pretrain_gpt.py \
--tensor-model-parallel-size 2 \
--pipeline-model-parallel-size 2 \
--sequence-parallel \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment