Commit a5a41922 authored by Deepak Narayanan's avatar Deepak Narayanan
Browse files

New example scripts showing how to use MP, and some notes to main README

parent cd4822f1
...@@ -218,7 +218,12 @@ These scripts use the PyTorch distributed launcher for distributed training. As ...@@ -218,7 +218,12 @@ These scripts use the PyTorch distributed launcher for distributed training. As
The two tiers of parallelism are data and model parallelism. First, we facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model parallel sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time. The two tiers of parallelism are data and model parallelism. First, we facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model parallel sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.
Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each). With `WORLD_SIZE` GPUs, `TENSOR_MP_SIZE` tensor-model-parallel size, `PIPELINE_MP_SIZE` pipeline-model-parallel-size, `WORLD_SIZE`/(`TENSOR_MP_SIZE` * `PIPELINE_MP_SIZE`) GPUs will be used for data parallelism. The default values for `--tensor-model-parallel-size` and `--pipeline-model-parallel-size` is 1, which will not implement either form of model parallelism. Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each). The number of microbatches in a per-pipeline minibatch is controlled by the `--num-microbatches-in-minibatch` argument. With `WORLD_SIZE` GPUs, `TENSOR_MP_SIZE` tensor-model-parallel size, `PIPELINE_MP_SIZE` pipeline-model-parallel-size, `WORLD_SIZE`/(`TENSOR_MP_SIZE` * `PIPELINE_MP_SIZE`) GPUs will be used for data parallelism. The default values for `--tensor-model-parallel-size` and `--pipeline-model-parallel-size` is 1, which will not implement either form of model parallelism.
We have examples of how to use these two different forms of model parallelism in these scripts:
`bash examples/pretrain_bert_distributed_with_mp.sh`
`bash examples/pretrain_gpt2_distributed_with_mp.sh`
Other than these minor changes, the distributed training is identical to the training on a single GPU. Other than these minor changes, the distributed training is identical to the training on a single GPU.
......
...@@ -32,4 +32,3 @@ python pretrain_bert.py \ ...@@ -32,4 +32,3 @@ python pretrain_bert.py \
--eval-interval 1000 \ --eval-interval 1000 \
--eval-iters 10 \ --eval-iters 10 \
--fp16 --fp16
#!/bin/bash
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
DATA_PATH=<Specify path and file prefix>_text_sentence
CHECKPOINT_PATH=<Specify path>
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
python -m torch.distributed.launch $DISTRIBUTED_ARGS \
pretrain_bert.py \
--tensor-model-parallel-size 2 \
--pipeline-model-parallel-size 2 \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--batch-size 2 \
--num-microbatches-in-minibatch 2 \
--seq-length 512 \
--max-position-embeddings 512 \
--train-iters 1000000 \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--vocab-file bert-vocab.txt \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
--lr 0.0001 \
--lr-decay-style linear \
--min-lr 1.0e-5 \
--lr-decay-iters 990000 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--warmup .01 \
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10 \
--fp16
...@@ -38,6 +38,3 @@ python pretrain_gpt2.py \ ...@@ -38,6 +38,3 @@ python pretrain_gpt2.py \
--eval-interval 1000 \ --eval-interval 1000 \
--eval-iters 10 \ --eval-iters 10 \
--fp16 --fp16
set +x
...@@ -46,7 +46,3 @@ python -m torch.distributed.launch $DISTRIBUTED_ARGS \ ...@@ -46,7 +46,3 @@ python -m torch.distributed.launch $DISTRIBUTED_ARGS \
--eval-interval 1000 \ --eval-interval 1000 \
--eval-iters 10 \ --eval-iters 10 \
--fp16 --fp16
set +x
#! /bin/bash
# Runs the "345M" parameter model
GPUS_PER_NODE=8
# Change for multinode config
MASTER_ADDR=localhost
MASTER_PORT=6000
NNODES=1
NODE_RANK=0
WORLD_SIZE=$(($GPUS_PER_NODE*$NNODES))
DATA_PATH=<Specify path and file prefix>_text_document
CHECKPOINT_PATH=<Specify path>
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $NNODES --node_rank $NODE_RANK --master_addr $MASTER_ADDR --master_port $MASTER_PORT"
python -m torch.distributed.launch $DISTRIBUTED_ARGS \
pretrain_gpt2.py \
--tensor-model-parallel-size 2 \
--pipeline-model-parallel-size 2 \
--num-layers 24 \
--hidden-size 1024 \
--num-attention-heads 16 \
--batch-size 4 \
--num-microbatches-in-minibatch 2 \
--seq-length 1024 \
--max-position-embeddings 1024 \
--train-iters 500000 \
--lr-decay-iters 320000 \
--save $CHECKPOINT_PATH \
--load $CHECKPOINT_PATH \
--data-path $DATA_PATH \
--vocab-file gpt2-vocab.json \
--merge-file gpt2-merges.txt \
--data-impl mmap \
--split 949,50,1 \
--distributed-backend nccl \
--lr 0.00015 \
--lr-decay-style cosine \
--min-lr 1.0e-5 \
--weight-decay 1e-2 \
--clip-grad 1.0 \
--warmup .01 \
--checkpoint-activations \
--log-interval 100 \
--save-interval 10000 \
--eval-interval 1000 \
--eval-iters 10 \
--fp16
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment