README.md 29.5 KB
Newer Older
Mohammad's avatar
Mohammad committed
1
2
[Megatron](https://arxiv.org/pdf/1909.08053.pdf) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel, and multinode training of [GPT-2](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [BERT](https://arxiv.org/pdf/1810.04805.pdf) using mixed precision.

3
Our codebase is capable of efficiently training a 72-layer, 8.3 billion parameter GPT-2 language model with 8-way model and 64-way data parallelism across 512 GPUs. We sustain 15.1 PetaFLOPs across the entire application with 76% scaling efficiency when compared to a strong single GPU baseline that sustains 39 TeraFLOPs, which is 30% of peak theoritical FLOPs. Using our GPT-2 model we achieve SOTA results on the WikiText-103 (10.8 compared to SOTA perplexity of 15.8) and LAMBADA (66.5% compared to SOTA accuracy of 63.2%) datasets. 
Mohammad's avatar
Mohammad committed
4

5
For BERT training, we swapped the position of the layer normalization and the residual connection in the model architecture (similar to GPT-2 architucture), which allowed the models to continue to improve as they were scaled up. Our BERT models with 3.9 billion parameters reaches a loss of 1.16, SQuAD 2.0 F1-score of 91.7, and RACE accuracy of 90.9%.
Mohammad's avatar
Mohammad committed
6
7
8
9
10
11
12
13
14
15
16
17
18

<a id="contents"></a>
# Contents
<!-- MarkdownTOC -->

- [Setup](#setup)
  - [Downloading Checkpoints](#downloading-checkpoints)
- [Usage](#usage)
- [Training](#training)
  - [Data Preprocessing](#data-preprocessing)
  - [BERT Pretraining](#bert-pretraining)
  - [GPT-2 Pretraining](#gpt-2-pretraining)
  - [Distributed BERT or GPT-2 Pretraining](#distributed-bert-or-gpt-2-pretraining)
Neel Kant's avatar
Neel Kant committed
19
- [REALM Pipeline](#realm)
Mohammad's avatar
Mohammad committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
- [Evaluation and Tasks](#evaluation-and-tasks)
  - [GPT-2 Text Generation](#gpt-2-text-generation)
  - [GPT-2 Evaluation](#gpt-2-evaluation)
    - [WikiText Perplexity Evaluation](#wikitext-perplexity-evaluation)
    - [LAMBADA Cloze Accuracy](#lambada-cloze-accuracy)
  - [BERT Task Evaluation](#bert-task-evaluation)
    - [RACE Evaluation](#race-evaluation)
    - [MNLI Evaluation](#mnli-evaluation)
- [Datasets](#datasets)
  - [Collecting Wikipedia Training Data](#collecting-wikipedia-training-data)
  - [Collecting GPT-2 Webtext Data](#collecting-gpt-2-webtext-data)

<!-- /MarkdownTOC -->

<a id="setup"></a>
# Setup
Mohammad's avatar
Mohammad committed
36
We officially support only python 3.6, pytorch 1.5, cuda 10, and nccl 2.6 versions and above.
37

Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
38
39
To use this repo please install the latest supported versions of PyTorch with GPU support and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start). We strongly recommend using one of [NGC's recent PyTorch containers](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch) (the latest compatible version at time of publication can be pulled with `docker pull nvcr.io/nvidia/pytorch:20.03-py3`). Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation or downstream tasks.

Evelina Bakhturina's avatar
update  
Evelina Bakhturina committed
40
To use megatron you can either clone the repo or install it via pip (make sure python3-dev is installed):
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
41
<pre>
Evelina Bakhturina's avatar
update  
Evelina Bakhturina committed
42
pip install megatron-lm
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
43
</pre>
Raul Puri's avatar
Raul Puri committed
44

Mohammad's avatar
Mohammad committed
45
46
<a id="downloading-checkpoints"></a>
## Downloading Checkpoints
Mohammad's avatar
latest  
Mohammad committed
47
We've provided two pretrained checkpoints for use to evaluate or finetuning downstream tasks. To access these checkpoints, first please [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI.
Raul Puri's avatar
Raul Puri committed
48

Mohammad's avatar
Mohammad committed
49
50
51
52
The checkpoints can be downloaded with:
<pre>
ngc registry model download-version --dest &#60;output_base_directory&#62; nvidia/&#60;model_name&#62;:&#60;version&#62;
</pre>
Raul Puri's avatar
Raul Puri committed
53

Mohammad's avatar
Mohammad committed
54
55
56
The available models along with `<model_name>:<version>` are below:
* [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m): megatron\_bert\_345m:v0.0
* [GPT-2-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m): megatron\_lm\_345m:v0.0 
Raul Puri's avatar
Raul Puri committed
57

Raul Puri's avatar
Raul Puri committed
58
The models require vocabulary files to run. The BERT uncased WordPiece vocab file can be extracted from Google's [pretrained BERT models](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt). The GPT-2 [vocab file](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json) and [merge table](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt) can be downloaded directly.
Raul Puri's avatar
Raul Puri committed
59

Mohammad's avatar
Mohammad committed
60
Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1)
Raul Puri's avatar
Raul Puri committed
61

Mohammad's avatar
Mohammad committed
62
<a id="usage"></a>
Raul Puri's avatar
Raul Puri committed
63
64
# Usage

Mohammad's avatar
Mohammad committed
65
66
67
68
69
70
71
72
After installation, there are several possible workflows. The most comprehensive is:
1. Data preprocessing
2. Pretraining
3. Finetuning (Optional for zero-shot tasks)
4. Downstream task evaluation or text generation

However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.

Mohammad's avatar
Mohammad committed
73
We've provided several scripts for pretraining both BERT and GPT-2 in [`examples`](./examples) directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT-2 interactive text generation.
Mohammad's avatar
Mohammad committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

<a id="training"></a>
# Training
<a id="data-preprocessing"></a>
## Data Preprocessing
We support three file formats for training, but all require preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
<pre>
{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}
</pre>

The name of the `text` field of the json can be changed by using the `--json-key` flag in [`preprocess_data.py`](./tools/preprocess_data.py) The other metadata are optional and are not used in training.

The loose json is then processed into a binary format for training. To convert the json into mmap, cached index file, or the lazy loader format use `preprocess_data.py`. Set the `--dataset-impl` flag to `mmap`, `cached`, or `lazy`, respectively (default is `mmap`). An example script to prepare data for BERT training is:
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-bert \
       --vocab bert-vocab.txt \
       --dataset-impl mmap \
       --tokenizer-type BertWordPieceLowerCase \
       --split-sentences
</pre>

The output will be two files named, in this case, `my-bert_text_sentence.bin` and `my-bert_text_sentence.idx`. The `--data-path` specified in later BERT training is the full path and new filename, but without the file extension.

Some minor modifications are required for GPT-2 data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-gpt2 \
       --vocab gpt2-vocab.json \
       --dataset-impl mmap \
       --tokenizer-type GPT2BPETokenizer \
       --merge-file gpt2-merges.txt \
       --append-eod
</pre>
Raul Puri's avatar
Raul Puri committed
111

Mohammad's avatar
Mohammad committed
112
Here the output files are named `my-gpt2_text_document.bin` and `my-gpt2_text_document.idx`. As before, in GPT-2 training, use the longer name without the extension as `--data-path`.
Raul Puri's avatar
Raul Puri committed
113

Mohammad's avatar
Mohammad committed
114
115
116
117
118
119
Further command line arguments are described in the source file [`preprocess_data.py`](./tools/preprocess_data.py).

<a id="bert-pretraining"></a>
## BERT Pretraining
`bash examples/pretrain_bert.sh`

Mohammad's avatar
Mohammad committed
120
This script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at `--lr` to a minimum set by `--min-lr` over `--lr-decay-iters` iterations. The fraction of training iterations used for warmup is set by `--warmup`. While this is single GPU training, the batch size specified by `--batch-size` is per GPU used for data parallelism. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with `--seed`).
Mohammad's avatar
Mohammad committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148

The logging, checkpoint-saving, and evaluation intervals are specified. Checkpointing the activations facilitates the training of larger models and/or batches. Note that the `--data-path` now includes the additional `_text_sentence` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
DATA_PATH=my-bert_text_sentence

BERT_ARGS="--num-layers 24 \
           --hidden-size 1024 \
           --num-attention-heads 16 \
           --seq-length 512 \
           --max-position-embeddings 512 \
           --lr 0.0001 \
           --train-iters 2000000 \
           --min-lr 0.00001 \
           --lr-decay-iters 990000 \
           --warmup 0.01 \
           --batch-size 8 \
           --vocab-file $VOCAB_FILE \
           --split 949,50,1 \
           --fp16"

OUTPUT_ARGS="--log-interval 10 \
             --save-interval 500 \
             --eval-interval 100 \
             --eval-iters 10 \
             --checkpoint-activations"
Raul Puri's avatar
Raul Puri committed
149
150

python pretrain_bert.py \
Mohammad's avatar
Mohammad committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
       $BERT_ARGS \
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

<a id="gpt-2-pretraining"></a>
## GPT-2 Pretraining
`bash examples/pretrain_gpt2.sh`

This script runs single GPU 345M parameter GPT-2 pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training. 

It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a `json` vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the `--lr-decay-style` has been set to cosine decay.  Note that the `--data-path` now includes the additional `_text_document` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document

GPT2_ARGS="--num-layers 24 \
           --hidden-size 1024 \
           --num-attention-heads 16 \
           --seq-length 1024 \
           --max-position-embeddings 1024 \
           --batch-size 4 \
           --lr 0.00015 \
           --train-iters 500000 \
           --lr-decay-iters 320000 \
           --lr-decay-style cosine \
           --vocab-file $VOCAB_FILE \
           --merge-file $MERGE_FILE \
           --warmup .01 \
           --fp16"

OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

191
python pretrain_gpt2.py \
Mohammad's avatar
Mohammad committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
       $GPT2_ARGS \
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH \
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

<a id="distributed-bert-or-gpt-2-pretraining"></a>
## Distributed BERT or GPT-2 Pretraining
`bash examples/pretrain_bert_distributed.sh`

`bash examples/pretrain_gpt2_distributed.sh`

These scripts use the PyTorch distributed launcher for distributed training. As such, multinode training can be achieved by properly setting environment variables and using `init_method='env://'` in the launcher. See the official PyTorch [documentation](https://pytorch.org/docs/stable/distributed.html#launch-utility) for further description of these [environment variables](https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization). By default, multinode training uses the [nccl](https://developer.nvidia.com/nccl) distributed backend. A simple set of additional arguments and the use of the PyTorch distributed module with the Python flag `-m torch.distributed.launch`, detailed below, are the only additional requirements to adopt distributed training.

The two tiers of parallelism are data and model parallelism. First, we facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model parallel sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.

Second, we developed a simple and efficient intra-layer model parallel approach. To use model parallelism, add the `--model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. With `WORLD_SIZE` GPUs and `MP_SIZE` model parallel size, `WORLD_SIZE`/`MP_SIZE` GPUs will be used for data parallelism. The default value for `--model-parallel-size` is 1, which will not implement model parallelism.

Other than these minor changes, the distributed training is identical to the training on a single GPU.

Distributed BERT training:
<pre>
WORLD_SIZE=8
MP_SIZE=2

DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
                  --nnodes 1 \
                  --node_rank 0 \
                  --master_addr localhost \
                  --master_port 6000"

CHECKPOINT_PATH=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
DATA_PATH=my-bert_text_sentence
BERT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;
OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_bert.py \
                $BERT_ARGS \
                $OUTPUT_ARGS \
                --save $CHECKPOINT_PATH \
                --load $CHECKPOINT_PATH \
                --data-path $DATA_PATH \
                --model-parallel-size $MP_SIZE \
                --DDP-impl torch
</pre>

Distributed GPT-2 training:
<pre>
WORLD_SIZE=8
MP_SIZE=2

DISTRIBUTED_ARGS=&#60;same as those directly above&#62;

CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document
GPT2_ARGS=&#60;same as those in <a href="#gpt-2-pretraining">GPT-2 pretraining</a> above&#62;
OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_gpt2.py \
                $GPT2_ARGS \
                $OUTPUT_ARGS \
                --save $CHECKPOINT_PATH \
                --load $CHECKPOINT_PATH \
                --data-path $DATA_PATH \
                --model-parallel-size $MP_SIZE \
                --DDP-impl torch

</pre>

Neel Kant's avatar
Neel Kant committed
267
<a id="realm"></a>
Neel Kant's avatar
Neel Kant committed
268
269
270
## REALM Pipeline
The following sections (will) reflect the three stages of training a REALM system. For now it's just the ICT code.
Loosely, they are pretraining the retriever modules, then jointly training the language model and the retriever, and then finetuning a question answering head on the language model with fixed retriever.
Neel Kant's avatar
Neel Kant committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328

### Inverse Cloze Task (ICT) Pretraining
1. Have a corpus in loose JSON format with the intention of creating a collection of fixed-size blocks of text as the fundamental units of data. For a corpus like Wikipedia, this will mean multiple sentences per block but also multiple blocks per document. 
Run `tools/preprocess_data.py` to construct one or more indexed datasets with the `--split-sentences` argument to make sentences the basic unit. For the original REALM system, we construct two datasets, one with the title of every document, and another with the body. 
Refer to the following script meant to be run in an interactive session on draco: 
<pre>
python preprocess_data.py \
    --input /home/universal-lm-data.cosmos549/datasets/wikipedia/wikidump_lines.json \
    --json-keys text title \
    --split-sentences \
    --tokenizer-type BertWordPieceLowerCase \
    --vocab-file /home/universal-lm-data.cosmos549/scratch/mshoeybi/data/albert/vocab.txt \
    --output-prefix wiki_indexed \
    --workers 5  # works well for 10 CPU cores. Scale up accordingly.
</pre>

2. Use a custom samples mapping function in place of `megatron/data/realm_dataset_utils.get_block_samples_mapping` if required. To do this, you will need to implement a new function in C++ inside of `megatron/data/helpers.cpp`. The samples mapping data structure is used to select the data that will constitute every training sample in advance of the training loop.
 The samples mapping is responsible for holding all of the required metadata needed to construct the sample from one or more indexed datasets. In REALM, the samples mapping contains the start and end sentence indices, as well as the document index (to find the correct title for a body) and a unique ID for every block. 
3. Pretrain a BERT language model using `pretrain_bert.py`, with the sequence length equal to the block size in token ids. This model should be trained on the same indexed dataset that is used to supply the blocks for the information retrieval task.
In REALM, this is an uncased bert base model trained with the standard hyperparameters.
4. Use `pretrain_bert_ict.py` to train an `ICTBertModel` which uses two BERT-based encoders to encode queries and blocks to perform retrieval with. 
The script below trains the ICT model from REALM on draco. It refrences a pretrained BERT model (step 3) in the `--bert-load` argument.
<pre>
EXPNAME="ict_wikipedia"
CHKPT="chkpts/${EXPNAME}"
LOGDIR="logs/${EXPNAME}"
COMMAND="/home/scratch.gcf/adlr-utils/release/cluster-interface/latest/mp_launch python pretrain_bert_ict.py \
    --num-layers 12 \
    --num-attention-heads 12 \
    --hidden-size 768 \
    --batch-size 128 \
    --seq-length 256 \
    --max-position-embeddings 256 \
    --ict-head-size 128 \
    --train-iters 100000 \
    --checkpoint-activations \
    --bert-load /home/dcg-adlr-nkant-output.cosmos1203/chkpts/base_bert_seq256 \
    --load CHKPT \
    --save CHKPT \
    --data-path /home/dcg-adlr-nkant-data.cosmos1202/wiki/wikipedia_lines \
    --titles-data-path /home/dcg-adlr-nkant-data.cosmos1202/wiki/wikipedia_lines-titles \
    --vocab-file /home/universal-lm-data.cosmos549/scratch/mshoeybi/data/albert/vocab.txt \
    --distributed-backend nccl \
    --lr 0.0001 \
    --num-workers 2 \
    --lr-decay-style linear \
    --weight-decay 1e-2 \
    --clip-grad 1.0 \
    --warmup .01 \
    --save-interval 3000 \
    --query-in-block-prob 0.1 \
    --fp16 \
    --adlr-autoresume \
    --adlr-autoresume-interval 100"
    
submit_job --image 'http://gitlab-master.nvidia.com/adlr/megatron-lm/megatron:20.03_faiss' --mounts /home/universal-lm-data.cosmos549,/home/dcg-adlr-nkant-data.cosmos1202,/home/dcg-adlr-nkant-output.cosmos1203,/home/nkant --name "${EXPNAME}" --partition batch_32GB --gpu 8 --nodes 4 --autoresume_timer 420 -c "${COMMAND}" --logdir "${LOGDIR}"
</pre>

Mohammad's avatar
Mohammad committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
<a id="evaluation-and-tasks"></a>
# Evaluation and Tasks

We provide several command line arguments, detailed in the scripts listed below, to handle various zero-shot and fine-tuned downstream tasks. However, you can also finetune your model from a pretrained checkpoint on other corpora as desired. To do so, simply add the `--finetune` flag and adjust the input files and training parameters within the original training script. The iteration count will be reset to zero, and the optimizer and internal state will be reinitialized. If the fine-tuning is interrupted for any reason, be sure to remove the `--finetune` flag before continuing, otherwise the training will start again from the beginning.

Because evaluation requires substantially less memory than training, it may be advantageous to merge a model trained in parallel for use on a single GPU in downstream tasks. The following script accomplishes this.

<pre>
MODEL_PARALLEL_SIZE=2

VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m

WORLD_SIZE=$MODEL_PARALLEL_SIZE python tools/merge_mp_partitions.py \
        --model-type BERT \
        --model-parallel-size $MODEL_PARALLEL_SIZE \
        --tokenizer-type BertWordPieceLowerCase \
        --vocab-file $VOCAB_FILE \
        --num-layers 24 \
        --hidden-size 1024 \
        --num-attention-heads 16 \
        --seq-length 512 \
        --max-position-embeddings 512 \
        --load $CHECKPOINT_PATH

</pre>

356
Several downstream tasks are described for both GPT-2 and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.
Mohammad's avatar
Mohammad committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394

<a id="gpt-2-text-generation"></a>
## GPT-2 Text Generation
`bash examples/generate_text.sh`

We generate text samples using largely the GPT-2 pretraining script. Few changes need to make, such as we need to provide the path to the pretrained checkpoint, the length of the output samples, whether to generate texts unconditionally (`--num-samples` to denote how many samples to generate) or conditional (need to pass `--sample-input-file <filename>` where each line of the file will be used as the conditional texts). There are few optional parameters to play, e.g. `top-k`, `top-p`, or `greedy` (set top-k and top-p to 0) sampling..

<pre>
CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
GPT2_ARGS=&#60;same as those in <a href="#gpt-2-pretraining">GPT-2 pretraining</a> above&#62;

MAX_OUTPUT_SEQUENCE_LENGTH=1024
TEMPERATURE=1.0
TOP_P=0.9
NUMBER_OF_SAMPLES=2
OUTPUT_FILE=samples.json

python tools/generate_samples_gpt2.py \
       $GPT2_ARGS \
       --load $CHECKPOINT_PATH \
       --out-seq-length $MAX_OUTPUT_SEQUENCE_LENGTH \
       --temperature $TEMPERATURE \
       --genfile $OUTPUT_FILE \
       --num-samples $NUMBER_OF_SAMPLES \
       --top_p $TOP_P \
       --recompute
</pre>

<a id="gpt-2-evaluation"></a>
## GPT-2 Evaluation
We include example scripts for GPT-2 evaluation on WikiText perplexity evaluation and LAMBADA Cloze accuracy.

<a id="wikitext-perplexity-evaluation"></a>
### WikiText Perplexity Evaluation
For even comparison with prior works, we evaluate perplexity on the word-level [WikiText-103 test dataset](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), and appropriately compute perplexity given the change in tokens when using our subword tokenizer.

Steven Steinke's avatar
Steven Steinke committed
395
We use the following command to run WikiText-103 evaluation on a 345M parameter model.
Mohammad's avatar
Mohammad committed
396
397
398
<pre>
TASK="WIKITEXT103"

399
VALID_DATA=&#60;wikitext path&#62;.txt
Mohammad's avatar
Mohammad committed
400
401
402
403
404
405
406
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m

COMMON_TASK_ARGS="--num-layers 24 \
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
407
408
                  --seq-length 1024 \
                  --max-position-embeddings 1024 \
Mohammad's avatar
Mohammad committed
409
410
411
412
413
414
415
                  --fp16 \
                  --vocab-file $VOCAB_FILE"

python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
416
       --tokenizer-type GPT2BPETokenizer \
Mohammad's avatar
Mohammad committed
417
418
419
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
       --batch-size 8 \
420
       --checkpoint-activations \
Mohammad's avatar
Mohammad committed
421
422
423
424
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>
425
426


Mohammad's avatar
Mohammad committed
427
428
429
<a id="lambada-cloze-accuracy"></a>
### LAMBADA Cloze Accuracy
To compute LAMBADA cloze accuracy (the accuracy of predicting the last token given the preceeding tokens) we utilize a detokenized, processed version of the [LAMBADA dataset](https://github.com/cybertronai/bflm/blob/master/lambada_test.jsonl).
430

431
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching. Make that `lambada` is part of the file path.
Raul Puri's avatar
Raul Puri committed
432

Mohammad's avatar
Mohammad committed
433
434
<pre>
TASK="LAMBADA"
435

436
VALID_DATA=&#60;lambada path&#62;.json
Mohammad's avatar
Mohammad committed
437
438
439
440
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS=&#60;same as those in <a href="#wikitext-perplexity-evaluation">WikiText Perplexity Evaluation</a> above&#62;
Raul Puri's avatar
Raul Puri committed
441

Mohammad's avatar
Mohammad committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
       --tokenizer-type GPT2BPETokenizer \
       --strict-lambada \
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
       --batch-size 8 \
       --checkpoint-activations \
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>

Further command line arguments are described in the source file [`main.py`](./tasks/main.py)

<a id="bert-task-evaluation"></a>
## BERT Task Evaluation
<a id="race-evaluation"></a>
### RACE Evaluation
Steven Steinke's avatar
Steven Steinke committed
463
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/). The `TRAIN_DATA` and `VALID_DATA` directory contain the RACE dataset as separate `.txt` files.
Mohammad's avatar
Mohammad committed
464
465
466
467
468
469
470
471

<pre>
TRAIN_DATA="data/RACE/train/middle"
VALID_DATA="data/RACE/dev/middle \
            data/RACE/dev/high"
VOCAB_FILE=bert-vocab.txt
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
Steven Steinke's avatar
Steven Steinke committed
472
COMMON_TASK_ARGS="--num-layers 24 \
473
474
475
476
477
478
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
                  --seq-length 512 \
                  --max-position-embeddings 512 \
                  --fp16 \
                  --vocab-file $VOCAB_FILE"
Mohammad's avatar
Mohammad committed
479
480
481
482
483

COMMON_TASK_ARGS_EXT="--train-data $TRAIN_DATA \
                      --valid-data $VALID_DATA \
                      --pretrained-checkpoint $PRETRAINED_CHECKPOINT \
                      --checkpoint-activations \
484
                      --save-interval 10000 \
Mohammad's avatar
Mohammad committed
485
                      --save $CHECKPOINT_PATH \
486
487
488
                      --log-interval 100 \
                      --eval-interval 1000 \
                      --eval-iters 10 \
Mohammad's avatar
Mohammad committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
                      --weight-decay 1.0e-1"

python tasks/main.py \
       --task RACE \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 3 \
       --batch-size 4 \
       --lr 1.0e-5 \
       --warmup 0.06
</pre>

<a id="mnli-evaluation"></a>
### MNLI Evaluation
The following script finetunes the BERT model for evaluation with the [MultiNLI sentence pair corpus](https://www.nyu.edu/projects/bowman/multinli/). Because the matching tasks are quite similar, the script can be quickly tweaked to work with the [Quora Question Pairs](https://www.kaggle.com/quora/question-pairs-dataset) (QQP) dataset as well.

<pre>

TRAIN_DATA="data/glue_data/MNLI/train.tsv"
VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \
            data/glue_data/MNLI/dev_mismatched.tsv"
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m_mnli
514
515
COMMON_TASK_ARGS=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
Mohammad's avatar
Mohammad committed
516
517
518
519
520
521
522
523
524
525
526

python tasks/main.py \
       --task MNLI \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 5 \
       --batch-size 8 \
       --lr 5.0e-5 \
       --warmup 0.065
</pre>
Raul Puri's avatar
Raul Puri committed
527

Mohammad's avatar
Mohammad committed
528
529
530
<a id="datasets"></a>
# Datasets
We do not host any datasets for GPT-2 or BERT training, however, we detail their collection so that our results may be reproduced.
531

Mohammad's avatar
Mohammad committed
532
<a id="collecting-wikipedia-training-data"></a>
533
## Collecting Wikipedia Training Data
Mohammad's avatar
Mohammad committed
534
We recommend following the Wikipedia data extraction process specified by Google research: "the recommended pre-processing is to download [the latest dump](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2), extract the text with [WikiExtractor.py](https://github.com/attardi/wikiextractor), and then apply any necessary cleanup to convert it into plain text." 
535

Mohammad's avatar
Mohammad committed
536
We recommend using the `--json` argument when using WikiExtractor, which will dump the Wikipedia data into loose json format (one json per line), making it more manageable on the file system and also readily consumable by our codebase. We recommend further preprocessing this json dataset by nltk punctuation standardization. For BERT training, add newlines between sentences during data preprocessing. This is done with the `--split-sentences` flag in `preprocess_data.py` as described [above](#data-preprocessing). (Note that if you'd like to use Wikipedia data for GPT-2 training you should still clean it with nltk/spacy/ftfy, but do not split it into newline separated sentences.)
537

Mohammad's avatar
Mohammad committed
538
539
540
<a id="collecting-gpt-2-webtext-data"></a>
## Collecting GPT-2 Webtext Data
We utilize the publicly available [OpenWebText](https://github.com/eukaryote31/openwebtext) library from [jcpeterson](https://github.com/jcpeterson/openwebtext) and [eukaryote31's](https://github.com/eukaryote31/openwebtext) work to download urls. We then filtered, cleaned, and deduplicated all downloaded content according to the procedure described in our [openwebtext](./tools/openwebtext) directory. For reddit URLs corresponding to content up to October 2018 we arrived at approximately 37GB of content.