README.md 38.9 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
Megatron ([1](https://arxiv.org/pdf/1909.08053.pdf), [2](https://arxiv.org/pdf/2104.04473.pdf), and [3](https://arxiv.org/pdf/2205.05198)) is a large, powerful transformer developed by the Applied Deep Learning Research team at NVIDIA. This repository is for ongoing research on training large transformer language models at scale. We developed efficient, model-parallel ([tensor](https://arxiv.org/pdf/1909.08053.pdf), [sequence](https://arxiv.org/pdf/2205.05198), and [pipeline](https://arxiv.org/pdf/2104.04473.pdf)), and multi-node pre-training of transformer based models such as [GPT](https://arxiv.org/abs/2005.14165), [BERT](https://arxiv.org/pdf/1810.04805.pdf), and [T5](https://arxiv.org/abs/1910.10683) using mixed precision.
Mohammad's avatar
Mohammad committed
2

3
4
5
6
7
8
9
10
Below are some of the projects where we have directly used Megatron:
* [BERT and GPT Studies Using Megatron](https://arxiv.org/pdf/1909.08053.pdf)
* [BioMegatron: Larger Biomedical Domain Language Model](https://www.aclweb.org/anthology/2020.emnlp-main.379.pdf)
* [End-to-End Training of Neural Retrievers for Open-Domain Question Answering](https://arxiv.org/abs/2101.00408)
* [Large Scale Multi-Actor Generative Dialog Modeling](https://www.aclweb.org/anthology/2020.acl-main.8.pdf)
* [Local Knowledge Powered Conversational Agents](https://arxiv.org/abs/2010.10150)
* [MEGATRON-CNTRL: Controllable Story Generation with External Knowledge Using Large-Scale Language Models](https://www.aclweb.org/anthology/2020.emnlp-main.226.pdf)
* [RACE Reading Comprehension Dataset Leaderboard](http://www.qizhexie.com/data/RACE_leaderboard.html)
mohammad's avatar
mohammad committed
11
* [Scaling Language Model Training to a Trillion Parameters Using Megatron](https://arxiv.org/pdf/2104.04473.pdf)
12
* [Training Question Answering Models From Synthetic Data](https://www.aclweb.org/anthology/2020.emnlp-main.468.pdf)
Mohammad's avatar
Mohammad committed
13

Jared Casper's avatar
Jared Casper committed
14
15
Megatron is also used in [NeMo Megatron](https://developer.nvidia.com/nvidia-nemo#nemo-megatron), a framework to help enterprises overcome the challenges of building and training sophisticated natural language processing models with billions and trillions of parameters.

Jared Casper's avatar
Jared Casper committed
16
Our codebase is capable of efficiently training very large (hundreds of billions of parameters) language models with both model and data parallelism. To demonstrate how the code scales with multiple GPUs and model sizes, we consider GPT models from 1 billion all the way to 1 trillion parameters. All models use a vocabulary size of 51,200 and a sequence length of 2048. We vary hidden size, number of attention heads, and number of layers to arrive at a specifc model size. As the model size increases, we also modestly increase the batch size. We leverage [NVIDIA's Selene supercomputer](https://www.top500.org/system/179842/) to perform scaling studies and use up to 3072 [A100](https://www.nvidia.com/en-us/data-center/a100/) GPUs for the largest model. Each cluster node has 8 NVIDIA 80GB A100 GPUs. The graph below shows that we scale nearly linear up to 1 trillion parameter models running on 3072 GPUs. Note that these results are from benchmark runs and these models were not trained to convergence; however, the FLOPs are measured for end-to-end training, i.e., includes all operations including data loading, optimization, and even logging.
17

Jared Casper's avatar
Jared Casper committed
18
![Scaling Graph](images/Achieved_petaFLOPs.png)
19

Jared Casper's avatar
Jared Casper committed
20
The following table shows both model and hardware FLOPs utilization for select configurations up to 1T parameters (see [our paper](https://arxiv.org/pdf/2205.05198) for a description of how these are calculated). Note that these numbers are also measured on benchmark runs and in this case are measured using a data parallel size of one.
21

Jared Casper's avatar
Jared Casper committed
22
23
24
25
26
27
| Model Size | Model FLOPs Utilization | Hardware FLOPs Utilization |
| :---: | :---: | :---: |
| 22B   | 41.5% | 43.7% |
| 175B  | 51.4% | 52.8% |
| 530B  | 56.0% | 57.0% |
| 1T    | 56.3% | 57.0% |
28

Mohammad's avatar
Mohammad committed
29
# Contents
Jared Casper's avatar
TOC fix  
Jared Casper committed
30
31
32
33
34
35
36
37
   * [Contents](#contents)
   * [Setup](#setup)
      * [Downloading Checkpoints](#downloading-checkpoints)
   * [Usage](#usage)
   * [Training](#training)
      * [Data Preprocessing](#data-preprocessing)
      * [BERT Pretraining](#bert-pretraining)
      * [GPT Pretraining](#gpt-pretraining)
38
39
      * [T5 Pretraining](#t5-pretraining)
      * [Distributed Pretraining](#distributed-pretraining)
Jared Casper's avatar
TOC fix  
Jared Casper committed
40
41
42
43
44
45
46
47
48
49
50
51
      * [GPT-3 Example](#gpt-3-example)
   * [Evaluation and Tasks](#evaluation-and-tasks)
      * [GPT Text Generation](#gpt-text-generation)
      * [GPT Evaluation](#gpt-evaluation)
         * [WikiText Perplexity Evaluation](#wikitext-perplexity-evaluation)
         * [LAMBADA Cloze Accuracy](#lambada-cloze-accuracy)
      * [BERT Task Evaluation](#bert-task-evaluation)
         * [RACE Evaluation](#race-evaluation)
         * [MNLI Evaluation](#mnli-evaluation)
   * [Datasets](#datasets)
      * [Collecting Wikipedia Training Data](#collecting-wikipedia-training-data)
      * [Collecting GPT Webtext Data](#collecting-gpt-webtext-data)
52

Mohammad's avatar
Mohammad committed
53
# Setup
54
We strongly recommend using the latest release of [NGC's PyTorch container](https://ngc.nvidia.com/catalog/containers/nvidia:pytorch). If you can't use this for some reason, use the latest pytorch, cuda, nccl, and NVIDIA [APEX](https://github.com/NVIDIA/apex#quick-start) releases.  Data preprocessing requires [NLTK](https://www.nltk.org/install.html), though this is not required for training, evaluation, or downstream tasks.
Evelina Bakhturina's avatar
update2  
Evelina Bakhturina committed
55

Mohammad's avatar
Mohammad committed
56
## Downloading Checkpoints
57
58
59
We have provided pretrained [BERT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_bert_345m) and [GPT-345M](https://ngc.nvidia.com/catalog/models/nvidia:megatron_lm_345m) checkpoints for use to evaluate or finetuning downstream tasks. To access these checkpoints, first [sign up](https://ngc.nvidia.com/signup) for and [setup](https://ngc.nvidia.com/setup/installers/cli) the NVIDIA GPU Cloud (NGC) Registry CLI. Further documentation for downloading models can be found in the [NGC documentation](https://docs.nvidia.com/dgx/ngc-registry-cli-user-guide/index.html#topic_6_4_1).

Alternatively, you can directly download the checkpoints using:
Raul Puri's avatar
Raul Puri committed
60

Mohammad's avatar
Mohammad committed
61
<pre>
62
BERT-345M-uncased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_uncased/zip -O megatron_bert_345m_v0.1_uncased.zip
63
64
BERT-345M-cased: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_bert_345m/versions/v0.1_cased/zip -O megatron_bert_345m_v0.1_cased.zip
GPT-345M: wget --content-disposition https://api.ngc.nvidia.com/v2/models/nvidia/megatron_lm_345m/versions/v0.0/zip -O megatron_lm_345m_v0.0.zip
Mohammad's avatar
Mohammad committed
65
</pre>
Raul Puri's avatar
Raul Puri committed
66

67
The models require vocabulary files to run. The BERT  WordPiece vocab file can be extracted from Google's pretrained BERT models: [uncased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-vocab.txt), [cased](https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-vocab.txt). The GPT [vocab file](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-vocab.json) and [merge table](https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-merges.txt) can be downloaded directly.
Raul Puri's avatar
Raul Puri committed
68
69
70

# Usage

Mohammad's avatar
Mohammad committed
71
72
73
74
75
76
77
78
After installation, there are several possible workflows. The most comprehensive is:
1. Data preprocessing
2. Pretraining
3. Finetuning (Optional for zero-shot tasks)
4. Downstream task evaluation or text generation

However, steps 1 and 2 can be replaced by using one of the pretrained models mentioned above.

79
We've provided several scripts for pretraining both BERT and GPT in [`examples`](./examples) directory, as well as scripts for both zero-shot and fine-tuned downstream tasks including MNLI, RACE, WikiText103, and LAMBADA evaluation. There is also a script for GPT interactive text generation.
Mohammad's avatar
Mohammad committed
80
81
82

# Training
## Data Preprocessing
83
The training data requires preprocessing. First, place your training data in a loose json format, with one json containing a text sample per line. For example:
Mohammad's avatar
Mohammad committed
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
<pre>
{"src": "www.nvidia.com", "text": "The quick brown fox", "type": "Eng", "id": "0", "title": "First Part"}
{"src": "The Internet", "text": "jumps over the lazy dog", "type": "Eng", "id": "42", "title": "Second Part"}
</pre>

The name of the `text` field of the json can be changed by using the `--json-key` flag in [`preprocess_data.py`](./tools/preprocess_data.py) The other metadata are optional and are not used in training.

The loose json is then processed into a binary format for training. To convert the json into mmap, cached index file, or the lazy loader format use `preprocess_data.py`. Set the `--dataset-impl` flag to `mmap`, `cached`, or `lazy`, respectively (default is `mmap`). An example script to prepare data for BERT training is:
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-bert \
       --vocab bert-vocab.txt \
       --dataset-impl mmap \
       --tokenizer-type BertWordPieceLowerCase \
       --split-sentences
</pre>

The output will be two files named, in this case, `my-bert_text_sentence.bin` and `my-bert_text_sentence.idx`. The `--data-path` specified in later BERT training is the full path and new filename, but without the file extension.

Stas Bekman's avatar
Stas Bekman committed
104
105
106
107
108
For T5 use the same preprocessing as BERT, perhaps renaming it to:
<pre>
       --output-prefix my-t5 \
</pre>

109
Some minor modifications are required for GPT data preprocessing, namely, the addition of a merge table, an end-of-document token, removal of sentence splitting, and a change to the tokenizer type:
Mohammad's avatar
Mohammad committed
110
111
112
113
114
115
116
117
118
119
<pre>
python tools/preprocess_data.py \
       --input my-corpus.json \
       --output-prefix my-gpt2 \
       --vocab gpt2-vocab.json \
       --dataset-impl mmap \
       --tokenizer-type GPT2BPETokenizer \
       --merge-file gpt2-merges.txt \
       --append-eod
</pre>
Raul Puri's avatar
Raul Puri committed
120

121
Here the output files are named `my-gpt2_text_document.bin` and `my-gpt2_text_document.idx`. As before, in GPT training, use the longer name without the extension as `--data-path`.
Raul Puri's avatar
Raul Puri committed
122

Mohammad's avatar
Mohammad committed
123
124
125
126
Further command line arguments are described in the source file [`preprocess_data.py`](./tools/preprocess_data.py).

## BERT Pretraining

127

Haibin Lin's avatar
Haibin Lin committed
128
The `examples/pretrain_bert.sh` script runs single GPU 345M parameter BERT pretraining. Debugging is the primary use for single GPU training, as the code base and command line arguments are optimized for highly distributed training. Most of the arguments are fairly self-explanatory. By default, the learning rate decays linearly over the training iterations starting at `--lr` to a minimum set by `--min-lr` over `--lr-decay-iters` iterations. The fraction of training iterations used for warmup is set by `--lr-warmup-fraction`. While this is single GPU training, the batch size specified by `--micro-batch-size` is a single forward-backward path batch-size and the code will perform gradient accumulation steps until it reaches `global-batch-size` which is the batch size per iteration. The data is partitioned into a 949:50:1 ratio for training/validation/test sets (default is 969:30:1). This partitioning happens on the fly, but is consistent across runs with the same random seed (1234 by default, or specified manually with `--seed`). We use `train-iters` as the training iterations requested. Alternatively, one can provide `--train-samples` which is total number of samples to train on. If this option is present, then instead of providing `--lr-decay-iters`, one will need to provide `--lr-decay-samples`.
Mohammad's avatar
Mohammad committed
129
130
131
132
133
134
135
136
137
138
139
140
141
142

The logging, checkpoint-saving, and evaluation intervals are specified. Checkpointing the activations facilitates the training of larger models and/or batches. Note that the `--data-path` now includes the additional `_text_sentence` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
DATA_PATH=my-bert_text_sentence

BERT_ARGS="--num-layers 24 \
           --hidden-size 1024 \
           --num-attention-heads 16 \
           --seq-length 512 \
           --max-position-embeddings 512 \
           --lr 0.0001 \
143
           --lr-decay-iters 990000 \
Mohammad's avatar
Mohammad committed
144
145
           --train-iters 2000000 \
           --min-lr 0.00001 \
146
           --lr-warmup-fraction 0.01 \
147
	   --micro-batch-size 4 \
148
           --global-batch-size 8 \
Mohammad's avatar
Mohammad committed
149
150
151
152
153
154
155
156
           --vocab-file $VOCAB_FILE \
           --split 949,50,1 \
           --fp16"

OUTPUT_ARGS="--log-interval 10 \
             --save-interval 500 \
             --eval-interval 100 \
             --eval-iters 10 \
157
             --activations-checkpoint-method uniform"
Raul Puri's avatar
Raul Puri committed
158
159

python pretrain_bert.py \
Mohammad's avatar
Mohammad committed
160
161
162
163
164
165
166
167
168
169
       $BERT_ARGS \
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).


170
171
## GPT Pretraining

172
The `examples/pretrain_gpt.sh` script runs single GPU 345M parameter GPT pretraining. As mentioned above, single GPU training is primarily intended for debugging purposes, as the code is optimized for distributed training.
Mohammad's avatar
Mohammad committed
173
174
175
176
177
178
179
180
181

It follows largely the same format as the previous BERT script with a few notable differences: the tokenization scheme used is BPE (which requires a merge table and a `json` vocabulary file) instead of WordPiece, the model architecture allows for longer sequences (note that the max position embedding must be greater than or equal to the maximum sequence length), and the `--lr-decay-style` has been set to cosine decay.  Note that the `--data-path` now includes the additional `_text_document` suffix added in preprocessing, but does not include the file extensions.

<pre>
CHECKPOINT_PATH=checkpoints/gpt2_345m
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
DATA_PATH=my-gpt2_text_document

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
GPT_ARGS="--num-layers 24 \
          --hidden-size 1024 \
          --num-attention-heads 16 \
          --seq-length 1024 \
          --max-position-embeddings 1024 \
          --micro-batch-size 4 \
          --global-batch-size 8 \
          --lr 0.00015 \
          --train-iters 500000 \
          --lr-decay-iters 320000 \
          --lr-decay-style cosine \
          --vocab-file $VOCAB_FILE \
          --merge-file $MERGE_FILE \
          --lr-warmup-fraction .01 \
          --fp16"
Mohammad's avatar
Mohammad committed
197
198
199

OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

200
201
python pretrain_gpt.py \
       $GPT_ARGS \
Mohammad's avatar
Mohammad committed
202
203
204
205
206
207
208
209
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH \
</pre>

Further command line arguments are described in the source file [`arguments.py`](./megatron/arguments.py).

210
211
## T5 Pretraining

212
Very similar to BERT and GPT, the `examples/pretrain_t5.sh` script runs single GPU "base" (~220M parameter) T5 pretraining. The primary difference from BERT and GPT is the addition of the following arguments to accommodate the T5 architecture:
213
214
215
216
217
218

* `--kv-channels` sets the inner dimension of the "key" and "value" matrices of all attention mechanisms in the model. For BERT and GPT this defaults to the hidden size divided by the number of attention heads, but can be configured for T5.

* `--ffn-hidden-size` sets the hidden size in the feed-forward networks within a transformer layer. For BERT and GPT this defaults to 4 times the transformer hidden size, but can be configured for T5.

* `--encoder-seq-length` and `--decoder-seq-length` set the sequence length for the encoder and decoder separately.
Mohammad's avatar
Mohammad committed
219

220
All of the other arguments remain as they were for BERT and GPT pretraining.
221

222
<pre>
Jared Casper's avatar
Jared Casper committed
223
CHECKPOINT_PATH=checkpoints/t5_base
Jared Casper's avatar
Jared Casper committed
224
VOCAB_FILE=t5-vocab.txt
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
DATA_PATH=my-t5_text_sentence

T5_ARGS="--num-layers 24 \
         --hidden-size 1024 \
         --num-attention-heads 16 \
         --kv-channels 64 \
         --ffn-hidden-size 3072 \
         --encoder-seq-length 512 \
         --decoder-seq-length 128 \
         --max-position-embeddings 512 \
         --lr 0.0001 \
         --lr-decay-iters 990000 \
         --train-iters 2000000 \
         --min-lr 0.00001 \
         --lr-warmup-fraction 0.01 \
         --micro-batch-size 16 \
         --global-batch-size 2048 \
         --vocab-file $VOCAB_FILE \
Stas Bekman's avatar
Stas Bekman committed
243
         --vocab-extra-ids 100 \
244
245
246
247
248
249
         --split 949,50,1 \
         --fp16"

OUTPUT_ARGS=&#60;same as those in <a href="#bert-pretraining">BERT pretraining</a> above&#62;

python pretrain_t5.py \
Stas Bekman's avatar
Stas Bekman committed
250
       $T5_ARGS \
251
252
253
254
255
256
257
258
259
260
       $OUTPUT_ARGS \
       --save $CHECKPOINT_PATH \
       --load $CHECKPOINT_PATH \
       --data-path $DATA_PATH
</pre>


## Distributed Pretraining

The `examples/pretrain_{bert,gpt,t5}_distributed.sh` scripts use the PyTorch distributed launcher for distributed training. As such, multi-node training can be achieved by properly setting environment variables and using `init_method='env://'` in the launcher. See the official PyTorch [documentation](https://pytorch.org/docs/stable/distributed.html#launch-utility) for further description of these [environment variables](https://pytorch.org/docs/stable/distributed.html#environment-variable-initialization). By default, multi-node training uses the [nccl](https://developer.nvidia.com/nccl) distributed backend. A simple set of additional arguments and the use of the PyTorch distributed module with the Python flag `-m torch.distributed.launch`, detailed below, are the only additional requirements to adopt distributed training.
Mohammad's avatar
Mohammad committed
261

262
We use two types of parallelism: data and model parallelism. We facilitate two distributed data parallel implementations: a simple one of our own that performs gradient all-reduce at the end of back propagation step, and Torch's distributed data parallel wrapper that overlaps gradient reduction with back propagation computation. To switch between these two options use `--DDP-impl local` or `--DDP-impl torch`, respectively. As expected, Torch distributed data parallelism is more efficient at larger model sizes. For example, for the 8.3 billion parameters model running on 512 GPUs, the scaling increases from 60% to 76% when Torch's distributed data parallel is used. However, the overlapping method requires more memory and for some configurations (e.g., 2.5 billion parameters using 2-way model parallel and 1.2 billion parameters with no model parallel) can make the overall training slower as a result. We empirically found that using a smaller model in those cases improves the training time.
Mohammad's avatar
Mohammad committed
263

264
265
266
Second, we developed a simple and efficient two-dimensional model-parallel approach. To use tensor model parallelism (splitting execution of a single transformer module over multiple GPUs), add the `--tensor-model-parallel-size` flag to specify the number of GPUs among which to split the model, along with the arguments passed to the distributed launcher as mentioned above. To use sequence parallelism specify `--sequence-parallel`, which requires tensor model parallel as it split among the same GPUs.

To use pipeline model parallelism (sharding the transformer modules into stages with an equal number of transformer modules on each stage, and then pipelining execution by breaking the batch into smaller microbatches), use the `--pipeline-model-parallel-size` flag to specify the number of stages to split the model into (e.g., splitting a model with 24 transformer layers across 4 stages would mean each stage gets 6 transformer layers each).
Mohammad's avatar
Mohammad committed
267

268
<!-- The number of microbatches in a per-pipeline minibatch is controlled by the `--num-microbatches-in-minibatch` argument. With `WORLD_SIZE` GPUs, `TENSOR_MP_SIZE` tensor-model-parallel size, `PIPELINE_MP_SIZE` pipeline-model-parallel-size, `WORLD_SIZE`/(`TENSOR_MP_SIZE` * `PIPELINE_MP_SIZE`) GPUs will be used for data parallelism. The default values for `--tensor-model-parallel-size` and `--pipeline-model-parallel-size` is 1, which will not implement either form of model parallelism. -->
269

270
We have examples of how to use these two different forms of model parallelism the example scripts ending in `distributed_with_mp.sh`:
Mohammad's avatar
Mohammad committed
271
272
273

Other than these minor changes, the distributed training is identical to the training on a single GPU.

274
Distributed training:
Mohammad's avatar
Mohammad committed
275
276
<pre>
WORLD_SIZE=8
277
278
TENSOR_MP_SIZE=2
PIPELINE_MP_SIZE=2
Mohammad's avatar
Mohammad committed
279
280
281
282
283
284
285

DISTRIBUTED_ARGS="--nproc_per_node $WORLD_SIZE \
                  --nnodes 1 \
                  --node_rank 0 \
                  --master_addr localhost \
                  --master_port 6000"

286
287
288
289
290
CHECKPOINT_PATH=&#60;same as above&#62;
VOCAB_FILE=&#60;same as above&#62;
DATA_PATH=&#60;same as above&#62;
MODEL_ARGS=&#60;same as above&#62;
OUTPUT_ARGS=&#60;same as above&#62;
Mohammad's avatar
Mohammad committed
291

292
293
python -m torch.distributed.launch $DISTRIBUTED_ARGS ./pretrain_<model>.py \
                $MODEL_ARGS \
Mohammad's avatar
Mohammad committed
294
295
296
297
                $OUTPUT_ARGS \
                --save $CHECKPOINT_PATH \
                --load $CHECKPOINT_PATH \
                --data-path $DATA_PATH \
298
299
                --tensor-model-parallel-size $TENSOR_MP_SIZE \
                --pipeline-model-parallel-size $PIPELINE_MP_SIZE \
300
                --sequence-parallel \
Mohammad's avatar
Mohammad committed
301
302
303
                --DDP-impl torch
</pre>

Deepak Narayanan's avatar
Deepak Narayanan committed
304
The interleaved pipelining schedule (more details in Section 2.2.2 of [our paper](https://arxiv.org/pdf/2104.04473.pdf)) can be enabled using the `--num-layers-per-virtual-pipeline-stage` argument, which controls the number of transformer layers in a virtual stage (by default with the non-interleaved schedule, each GPU will execute a single virtual stage with `NUM_LAYERS / PIPELINE_MP_SIZE` transformer layers). The total number of layers in the transformer model should be divisible by this argument value. Additionally, the number of microbatches in the pipeline (computed as `GLOBAL_BATCH_SIZE / (DATA_PARALLEL_SIZE * MICRO_BATCH_SIZE)`) should be divisible by the `PIPELINE_MP_SIZE` when using this schedule (this condition is checked in an assertion in the code). The interleaved schedule is not supported for pipelines with 2 stages (`PIPELINE_MP_SIZE=2`).
305

slym's avatar
slym committed
306
307
## Activation Checkpointing and Recomputation

308
309
310
To reduce GPU memory usage so deploy a large model to a training system, we support activation checkpointing and recomputation. We support two levels of recompute granularity: `selective` and `full`. Selective recomputation is the default and recommended in almost all cases. It saves the activations that take less space and are expensive to recompute and recomputes activations that take a lot of space but are relatively cheap to recompute (see [our paper](https://arxiv.org/pdf/2205.05198) for details). To enable selective activation recompute simply use `--recompute-activations`.

For cases where memory is very tight, `full` checkpointing saves just the inputs to a transformer layer, or a block of transformer layers, and recomputes everything else. To turn on full activation recompute use `--recompute-granularity full`. When using full activation recomputation, there are two methods: `uniform` and `block`, chosen using the `--recompute-method` argument.
slym's avatar
slym committed
311

312
* Uniform method uniformly divides the Transformer layers into groups of layers and stores the input activations of each group in the memory. The baseline group size is 1 and, in this case, the input activation of each Transformer layer is checkpointed. When the GPU memory is insufficient, increasing the number of layers per group reduces the memory usage thus enables running a bigger model. For example, when using the number of layers per group of 4, the input activation of each group of 4 Transformer layers is checkpointed.
slym's avatar
slym committed
313

314
* Block method checkpoints the input activations of a set number of individual Transformer layers per pipeline stage and do the rest of layers without any checkpointing. This method can be used to skip checkpointing some Transformer layers until the GPU memory is fully used, which is applicable only when there is unused GPU memory. Checkpointing fewer transformer layers avoids unnecessary activation recomputation in the backprop thus improves training performance. For example, when we specify 5 layers to checkpoint of 8 layers per pipeline stage, the input activations of only the first 5 Transformer layers are checkpointed and activation recomputation for the rest 3 layers is not needed in the backprop.
slym's avatar
slym committed
315
316


317
318
## GPT-3 Example

319
In `examples/pretrain_gpt3_175B.sh` we have provided an example of how to configure Megatron to run [GPT-3](https://arxiv.org/abs/2005.14165) with 175 billion parameters on 1024 GPUs. The script is designed for [slurm](https://slurm.schedmd.com/documentation.html) with [pyxis](https://github.com/NVIDIA/pyxis) plugin but can be easily adopted to any other scheduler. It uses 8-way and 16-way tensor and pipeline parallelism, respectively. With options `global-batch-size 1536` and `rampup-batch-size 16 16 5859375`, the training will start with global batch size 16 and linearly increase the global batch size to 1536 over 5,859,375 samples with incrmeental steps 16. The training dataset can be either a single set or a multiple datasets combined with a set of weights.
320
321
322
323
324

With full global batch size of 1536 on 1024 A100 GPUs, each iteration takes around 32 seconds resulting in 138 teraFLOPs per GPU which is 44% of the theoretical peak FLOPs.


<!--
Neel Kant's avatar
Neel Kant committed
325
## REALM Pipeline
326
We are working on implementing the [REALM](https://arxiv.org/pdf/2002.08909.pdf) system. The following sections (will) reflect the three stages of training it. For now it's just the ICT code.
Neel Kant's avatar
Neel Kant committed
327
Loosely, they are pretraining the retriever modules, then jointly training the language model and the retriever, and then finetuning a question answering head on the language model with fixed retriever.
Neel Kant's avatar
Neel Kant committed
328
329

### Inverse Cloze Task (ICT) Pretraining
330
331
332
1. Have a corpus in loose JSON format with the intention of creating a collection of fixed-size blocks of text as the fundamental units of data. For a corpus like Wikipedia, this will mean multiple sentences per block but also multiple blocks per document.
Run `tools/preprocess_data.py` to construct one or more indexed datasets with the `--split-sentences` argument to make sentences the basic unit. For the original REALM system, we construct two datasets, one with the title of every document, and another with the body.
Refer to the following script
Neel Kant's avatar
Neel Kant committed
333
334
<pre>
python preprocess_data.py \
Neel Kant's avatar
Neel Kant committed
335
    --input /path/to/corpus.json \
Neel Kant's avatar
Neel Kant committed
336
337
338
    --json-keys text title \
    --split-sentences \
    --tokenizer-type BertWordPieceLowerCase \
Neel Kant's avatar
Neel Kant committed
339
340
    --vocab-file /path/to/vocab.txt \
    --output-prefix corpus_indexed \
Neel Kant's avatar
Neel Kant committed
341
342
343
344
    --workers 5  # works well for 10 CPU cores. Scale up accordingly.
</pre>

2. Use a custom samples mapping function in place of `megatron/data/realm_dataset_utils.get_block_samples_mapping` if required. To do this, you will need to implement a new function in C++ inside of `megatron/data/helpers.cpp`. The samples mapping data structure is used to select the data that will constitute every training sample in advance of the training loop.
345
 The samples mapping is responsible for holding all of the required metadata needed to construct the sample from one or more indexed datasets. In REALM, the samples mapping contains the start and end sentence indices, as well as the document index (to find the correct title for a body) and a unique ID for every block.
Neel Kant's avatar
Neel Kant committed
346
347
3. Pretrain a BERT language model using `pretrain_bert.py`, with the sequence length equal to the block size in token ids. This model should be trained on the same indexed dataset that is used to supply the blocks for the information retrieval task.
In REALM, this is an uncased bert base model trained with the standard hyperparameters.
348
349
4. Use `pretrain_ict.py` to train an `ICTBertModel` which uses two BERT-based encoders to encode queries and blocks to perform retrieval with.
The script below trains the ICT model from REALM. It refrences a pretrained BERT model (step 3) in the `--bert-load` argument. The batch size used in the paper is 4096, so this would need to be run with data parallel world size 32.
Neel Kant's avatar
Neel Kant committed
350
<pre>
Neel Kant's avatar
Neel Kant committed
351
python pretrain_ict.py \
Neel Kant's avatar
Neel Kant committed
352
353
354
355
356
357
358
359
    --num-layers 12 \
    --num-attention-heads 12 \
    --hidden-size 768 \
    --batch-size 128 \
    --seq-length 256 \
    --max-position-embeddings 256 \
    --ict-head-size 128 \
    --train-iters 100000 \
360
    --activations-checkpoint-method uniform \
Neel Kant's avatar
Neel Kant committed
361
362
363
364
365
366
    --bert-load /path/to/pretrained_bert \
    --load checkpoints \
    --save checkpoints \
    --data-path /path/to/indexed_dataset \
    --titles-data-path /path/to/titles_indexed_dataset \
    --vocab-file /path/to/vocab.txt \
Neel Kant's avatar
Neel Kant committed
367
368
369
370
371
    --lr 0.0001 \
    --num-workers 2 \
    --lr-decay-style linear \
    --weight-decay 1e-2 \
    --clip-grad 1.0 \
372
    --lr-warmup-fraction .01 \
Neel Kant's avatar
Neel Kant committed
373
374
    --save-interval 3000 \
    --query-in-block-prob 0.1 \
Neel Kant's avatar
Neel Kant committed
375
    --fp16
376

Neel Kant's avatar
Neel Kant committed
377
378
</pre>

Neel Kant's avatar
Neel Kant committed
379
### Building an Index of Block Embeddings
380
381
After having trained an ICT model, you can now embed an entire dataset of blocks by creating a `BlockData` structure. After that has been saved, you can load it
and wrap it with a `FaissMIPSIndex` to do fast similarity search which is key in the learned information retrieval pipeline. The initial index can be built with the following script, meant to be run in an interactive session. It can leverage multiple GPUs on multiple nodes to index large datasets much more quickly.
Neel Kant's avatar
Neel Kant committed
382
383

<pre>
Neel Kant's avatar
Neel Kant committed
384
python tools/create_doc_index.py \
Neel Kant's avatar
Neel Kant committed
385
386
387
388
389
    --num-layers 12 \
    --hidden-size 768 \
    --ict-head-size 128 \
    --num-attention-heads 12 \
    --batch-size 128 \
390
    --activations-checkpoint-method uniform \
Neel Kant's avatar
Neel Kant committed
391
392
    --seq-length 256 \
    --max-position-embeddings 256 \
Neel Kant's avatar
Neel Kant committed
393
394
395
396
    --ict-load /path/to/pretrained_ict \
    --data-path /path/to/indexed_dataset \
    --titles-data-path /path/to/titles_indexed_dataset \
    --block-data-path embedded_blocks.pkl \
Neel Kant's avatar
Neel Kant committed
397
398
    --indexer-log-interval 1000 \
    --indexer-batch-size 128 \
Neel Kant's avatar
Neel Kant committed
399
    --vocab-file /path/to/vocab.txt \
Neel Kant's avatar
Neel Kant committed
400
401
402
403
    --num-workers 2 \
    --fp16
</pre>

404
405
-->

Mohammad's avatar
Mohammad committed
406
407
408
409
# Evaluation and Tasks

We provide several command line arguments, detailed in the scripts listed below, to handle various zero-shot and fine-tuned downstream tasks. However, you can also finetune your model from a pretrained checkpoint on other corpora as desired. To do so, simply add the `--finetune` flag and adjust the input files and training parameters within the original training script. The iteration count will be reset to zero, and the optimizer and internal state will be reinitialized. If the fine-tuning is interrupted for any reason, be sure to remove the `--finetune` flag before continuing, otherwise the training will start again from the beginning.

410
Because evaluation requires substantially less memory than training, it may be advantageous to merge a model trained in parallel for use on a single GPU in downstream tasks. The following script accomplishes this. Currently only tensor model parallelism is supported on input and pipeline model parallelism on the output. This example reads in a model with 2-way tensor model parallelism and writes out a model with 2-way pipeline model parallelism.
Mohammad's avatar
Mohammad committed
411
412

<pre>
413
TENSOR_MODEL_PARALLEL_SIZE=2
414
TARGET_PIPELINE_MODEL_PARALLEL_SIZE=2
Mohammad's avatar
Mohammad committed
415
416
417
418

VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m

419
WORLD_SIZE=$TENSOR_MODEL_PARALLEL_SIZE python tools/merge_mp_partitions.py \
Mohammad's avatar
Mohammad committed
420
        --model-type BERT \
421
        --tensor-model-parallel-size $TENSOR_MODEL_PARALLEL_SIZE \
422
423
        --pipeline-model-parallel-size 1 \
        --target-pipeline-model-parallel-size $TARGET_PIPELINE_MODEL_PARALLEL_SIZE \
Mohammad's avatar
Mohammad committed
424
425
426
427
428
429
430
431
        --tokenizer-type BertWordPieceLowerCase \
        --vocab-file $VOCAB_FILE \
        --num-layers 24 \
        --hidden-size 1024 \
        --num-attention-heads 16 \
        --seq-length 512 \
        --max-position-embeddings 512 \
        --load $CHECKPOINT_PATH
Jared Casper's avatar
Jared Casper committed
432
        --save $CHECKPOINT_PATH/merged
Mohammad's avatar
Mohammad committed
433
434

</pre>
Jared Casper's avatar
Jared Casper committed
435

436
Several downstream tasks are described for both GPT and BERT models below. They can be run in distributed and model parallel modes with the same changes used in the training scripts.
Mohammad's avatar
Mohammad committed
437

438
## GPT Text Generation
Mohammad's avatar
Mohammad committed
439

mshoeybi's avatar
mshoeybi committed
440
We have included a simple REST server to use for text generation in `tools/run_text_generation_server.py`. You run it much like you would start a pretraining job, specifying an appropriate pretrained checkpoint. There are also few optional parameters: `temperature`, `top-k`and `top-p`. See `--help` or the source file for more information. See [examples/run_text_generation_server_345M.sh](examples/run_text_generation_server_345M.sh) for an example of how to run the server.
441
442

Once the server is running you can use `tools/text_generation_cli.py` to query it, it takes one argument which is the host the server is running on.
Mohammad's avatar
Mohammad committed
443
444

<pre>
445
446
tools/text_generation_cli.py localhost
</pre>
Mohammad's avatar
Mohammad committed
447

448
You can also use CURL or any other tools to query the server directly:
Mohammad's avatar
Mohammad committed
449

450
451
<pre>
curl 'http://localhost:5000/api' -X 'PUT' -H 'Content-Type: application/json; charset=UTF-8'  -d '{"prompts":["Hello world"], "tokens_to_generate":1}'
Mohammad's avatar
Mohammad committed
452
453
</pre>

454
455
See [megatron/text_generation_server.py](megatron/text_generation_server.py) for more API options.

456
457
## GPT Evaluation
We include example scripts for GPT evaluation on WikiText perplexity evaluation and LAMBADA Cloze accuracy.
Mohammad's avatar
Mohammad committed
458
459
460
461

### WikiText Perplexity Evaluation
For even comparison with prior works, we evaluate perplexity on the word-level [WikiText-103 test dataset](https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-v1.zip), and appropriately compute perplexity given the change in tokens when using our subword tokenizer.

Steven Steinke's avatar
Steven Steinke committed
462
We use the following command to run WikiText-103 evaluation on a 345M parameter model.
Mohammad's avatar
Mohammad committed
463
464
465
<pre>
TASK="WIKITEXT103"

466
VALID_DATA=&#60;wikitext path&#62;.txt
Mohammad's avatar
Mohammad committed
467
468
469
470
471
472
473
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m

COMMON_TASK_ARGS="--num-layers 24 \
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
474
475
                  --seq-length 1024 \
                  --max-position-embeddings 1024 \
Mohammad's avatar
Mohammad committed
476
477
478
479
480
481
482
                  --fp16 \
                  --vocab-file $VOCAB_FILE"

python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
483
       --tokenizer-type GPT2BPETokenizer \
Mohammad's avatar
Mohammad committed
484
485
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
486
       --micro-batch-size 8 \
487
       --activations-checkpoint-method uniform \
Mohammad's avatar
Mohammad committed
488
489
490
491
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>
492
493


Mohammad's avatar
Mohammad committed
494
### LAMBADA Cloze Accuracy
495
To compute LAMBADA cloze accuracy (the accuracy of predicting the last token given the preceding tokens) we utilize a detokenized, processed version of the [LAMBADA dataset](https://github.com/cybertronai/bflm/blob/master/lambada_test.jsonl).
496

497
We use the following command to run LAMBADA evaluation on a 345M parameter model. Note that the `--strict-lambada` flag should be used to require whole word matching. Make that `lambada` is part of the file path.
Raul Puri's avatar
Raul Puri committed
498

Mohammad's avatar
Mohammad committed
499
500
<pre>
TASK="LAMBADA"
501

502
VALID_DATA=&#60;lambada path&#62;.json
Mohammad's avatar
Mohammad committed
503
504
505
506
VOCAB_FILE=gpt2-vocab.json
MERGE_FILE=gpt2-merges.txt
CHECKPOINT_PATH=checkpoints/gpt2_345m
COMMON_TASK_ARGS=&#60;same as those in <a href="#wikitext-perplexity-evaluation">WikiText Perplexity Evaluation</a> above&#62;
Raul Puri's avatar
Raul Puri committed
507

Mohammad's avatar
Mohammad committed
508
509
510
511
512
513
514
515
python tasks/main.py \
       --task $TASK \
       $COMMON_TASK_ARGS \
       --valid-data $VALID_DATA \
       --tokenizer-type GPT2BPETokenizer \
       --strict-lambada \
       --merge-file $MERGE_FILE \
       --load $CHECKPOINT_PATH \
516
       --micro-batch-size 8 \
517
       --activations-checkpoint-method uniform \
Mohammad's avatar
Mohammad committed
518
519
520
521
522
523
524
525
526
       --log-interval 10 \
       --no-load-optim \
       --no-load-rng
</pre>

Further command line arguments are described in the source file [`main.py`](./tasks/main.py)

## BERT Task Evaluation
### RACE Evaluation
527
The following script finetunes the BERT model for evaluation on the [RACE dataset](http://www.cs.cmu.edu/~glai1/data/race/). The `TRAIN_DATA` and `VALID_DATA` directory contain the RACE dataset as separate `.txt` files. Note that for RACE, the batch size is the number of RACE query's to evaluate. Since each RACE query has four samples, the effective batch size passed through the model will be four times the batch size specified on the command line.
Mohammad's avatar
Mohammad committed
528
529
530
531
532
533
534
535

<pre>
TRAIN_DATA="data/RACE/train/middle"
VALID_DATA="data/RACE/dev/middle \
            data/RACE/dev/high"
VOCAB_FILE=bert-vocab.txt
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
CHECKPOINT_PATH=checkpoints/bert_345m_race
Steven Steinke's avatar
Steven Steinke committed
536
COMMON_TASK_ARGS="--num-layers 24 \
537
538
539
540
541
542
                  --hidden-size 1024 \
                  --num-attention-heads 16 \
                  --seq-length 512 \
                  --max-position-embeddings 512 \
                  --fp16 \
                  --vocab-file $VOCAB_FILE"
Mohammad's avatar
Mohammad committed
543
544
545
546

COMMON_TASK_ARGS_EXT="--train-data $TRAIN_DATA \
                      --valid-data $VALID_DATA \
                      --pretrained-checkpoint $PRETRAINED_CHECKPOINT \
547
                      --activations-checkpoint-method uniform \
548
                      --save-interval 10000 \
Mohammad's avatar
Mohammad committed
549
                      --save $CHECKPOINT_PATH \
550
551
552
                      --log-interval 100 \
                      --eval-interval 1000 \
                      --eval-iters 10 \
Mohammad's avatar
Mohammad committed
553
554
555
556
557
558
559
560
                      --weight-decay 1.0e-1"

python tasks/main.py \
       --task RACE \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 3 \
561
       --micro-batch-size 4 \
Mohammad's avatar
Mohammad committed
562
       --lr 1.0e-5 \
563
       --lr-warmup-fraction 0.06
Mohammad's avatar
Mohammad committed
564
565
566
567
568
569
570
571
572
573
574
575
576
</pre>

### MNLI Evaluation
The following script finetunes the BERT model for evaluation with the [MultiNLI sentence pair corpus](https://www.nyu.edu/projects/bowman/multinli/). Because the matching tasks are quite similar, the script can be quickly tweaked to work with the [Quora Question Pairs](https://www.kaggle.com/quora/question-pairs-dataset) (QQP) dataset as well.

<pre>

TRAIN_DATA="data/glue_data/MNLI/train.tsv"
VALID_DATA="data/glue_data/MNLI/dev_matched.tsv \
            data/glue_data/MNLI/dev_mismatched.tsv"
PRETRAINED_CHECKPOINT=checkpoints/bert_345m
VOCAB_FILE=bert-vocab.txt
CHECKPOINT_PATH=checkpoints/bert_345m_mnli
577
578
COMMON_TASK_ARGS=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
COMMON_TASK_ARGS_EXT=&#60;same as those in <a href="#race-evaluation">RACE Evaluation</a> above&#62;
Mohammad's avatar
Mohammad committed
579
580
581
582
583
584
585

python tasks/main.py \
       --task MNLI \
       $COMMON_TASK_ARGS \
       $COMMON_TASK_ARGS_EXT \
       --tokenizer-type BertWordPieceLowerCase \
       --epochs 5 \
586
       --micro-batch-size 8 \
Mohammad's avatar
Mohammad committed
587
       --lr 5.0e-5 \
588
       --lr-warmup-fraction 0.065
Mohammad's avatar
Mohammad committed
589
</pre>
Raul Puri's avatar
Raul Puri committed
590

Mohammad's avatar
Mohammad committed
591
# Datasets
592
We do not host any datasets for GPT or BERT training, however, we detail their collection so that our results may be reproduced.
593
594

## Collecting Wikipedia Training Data
595
We recommend following the Wikipedia data extraction process specified by Google research: "the recommended pre-processing is to download [the latest dump](https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2), extract the text with [WikiExtractor.py](https://github.com/attardi/wikiextractor), and then apply any necessary cleanup to convert it into plain text."
596

597
We recommend using the `--json` argument when using WikiExtractor, which will dump the Wikipedia data into loose json format (one json per line), making it more manageable on the file system and also readily consumable by our codebase. We recommend further preprocessing this json dataset by nltk punctuation standardization. For BERT training, use the `--split-sentences` flag to `preprocess_data.py` as described [above](#data-preprocessing) to include sentence breaks in the produced index. If you'd like to use Wikipedia data for GPT training you should still clean it with nltk/spacy/ftfy, but do not use the `--split-sentences` flag.
598

599
## Collecting GPT Webtext Data
Mohammad's avatar
Mohammad committed
600
We utilize the publicly available [OpenWebText](https://github.com/eukaryote31/openwebtext) library from [jcpeterson](https://github.com/jcpeterson/openwebtext) and [eukaryote31's](https://github.com/eukaryote31/openwebtext) work to download urls. We then filtered, cleaned, and deduplicated all downloaded content according to the procedure described in our [openwebtext](./tools/openwebtext) directory. For reddit URLs corresponding to content up to October 2018 we arrived at approximately 37GB of content.