text_generation_utils.py 16.5 KB
Newer Older
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Utilities for generating text."""
17

18
import copy
Mohammad's avatar
Mohammad committed
19
20
21
22
import json
import os
import time

23
24
25
import torch
import torch.nn.functional as F

Mohammad's avatar
Mohammad committed
26
27
28
from megatron import get_args
from megatron import get_tokenizer
from megatron import mpu
29
from megatron.utils import get_ltor_masks_and_position_ids, unwrap_model
Jared Casper's avatar
Jared Casper committed
30
from megatron.p2p_communication import recv_forward, send_forward
31

32
33
34
35
36
# These are needed to unwrap the model, would be nice to put these in megatron.utils if possible?
from torch.nn.parallel.distributed import DistributedDataParallel as torchDDP
from megatron.model import DistributedDataParallel as LocalDDP
from megatron.model import Float16Module

37
38
39
40
def get_batch(context_tokens):
    """Generate batch from context tokens."""
    args = get_args()
    tokenizer = get_tokenizer()
41

42
    # Move to GPU.
43
44
    tokens = context_tokens.contiguous().cuda()
    
45
46
    # Get the attention mask and postition ids.
    attention_mask, _, position_ids = get_ltor_masks_and_position_ids(
47
        tokens,
48
        tokenizer.eod,
49
        args.reset_position_ids,
50
        args.reset_attention_mask,
51
        args.eod_mask_loss)
52

53
54
    return tokens, attention_mask, position_ids

55

56
def top_k_logits(logits, top_k=0, top_p=0.0, filter_value=-float('Inf')):
57
58
59
60
    """ This function has been mostly taken from huggingface conversational
     ai code at
         https://medium.com/huggingface/how-to-build-a-state-of-the-art-
              conversational-ai-with-transfer-learning-2d818ac26313 """
61
62

    if top_k > 0:
63
64
        # Remove all tokens with a probability less than the
        # last token of the top-k
65
66
        indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
        logits[indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
67

68
    if top_p > 0.0:
69
70
71
72
73
        # Cconvert to 1D
        sorted_logits, sorted_indices = torch.sort(
            logits, descending=True, dim=-1)
        cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1),
                                        dim=-1)
74
75
76

        # Remove tokens with cumulative probability above the threshold
        sorted_indices_to_remove = cumulative_probs > top_p
77
78
79
80
        # Shift the indices to the right to keep also the first token
        # above the threshold
        sorted_indices_to_remove[..., 1:] \
            = sorted_indices_to_remove[..., :-1].clone()
81
        sorted_indices_to_remove[..., 0] = 0
82
83
84
        for i in range(sorted_indices.size(0)):
            indices_to_remove = sorted_indices[i][sorted_indices_to_remove[i]]
            logits[i][indices_to_remove] = filter_value
Mohammad's avatar
Mohammad committed
85

86
87
    return logits

88
def pad_batch(batch, pad_id, max_len):
89
    context_lengths = []
90
    max_context_length = max([len(tokens) for tokens in batch])
91
92
    for tokens in batch:
        context_length = len(tokens)
93
94
        if context_length < max_context_length + max_len:
            tokens.extend([pad_id] * (max_context_length + max_len - context_length))
95
96
97
        context_lengths.append(context_length)
    return batch, context_lengths

98
def tokenize_batch(sentences, max_len):
99
100
101
102
    args = get_args()
    tokenizer = get_tokenizer()
    context_tokens = [tokenizer.tokenize(s) for s in sentences]
    context_tokens, context_lengths = pad_batch(context_tokens,
103
                                                tokenizer.eod, max_len)
104
105
106
107
    context_tokens_tensor = torch.cuda.LongTensor(context_tokens)
    context_length_tensor = torch.cuda.LongTensor(context_lengths)
    return context_tokens_tensor, context_length_tensor 

108
def send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
109
110
111
112
    """
    Needs to be synced up with receive_generate_info
    """
    # Send the sizes of the tensors
113
    input_info = [context_tokens_tensor.size(0), context_tokens_tensor.size(1), tokens_to_generate, all_probs]
114
115
116
117
118
119
120
121
122
123
124
    input_info_tensor = torch.cuda.LongTensor(input_info)
    torch.distributed.broadcast(input_info_tensor, 0)

    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)

def receive_generate_info():
    """
    Needs to be synced up with send_generate_info
    """
rprenger's avatar
rprenger committed
125
    input_info_tensor = torch.empty(4, dtype=torch.int64, device=torch.cuda.current_device())
126
127
128
    torch.distributed.broadcast(input_info_tensor, 0)
    batch_size = input_info_tensor[0].item()
    seq_len = input_info_tensor[1].item()
129
    tokens_to_generate = input_info_tensor[2].item()
rprenger's avatar
rprenger committed
130
    all_probs = input_info_tensor[3].item()
131
    
rprenger's avatar
rprenger committed
132
133
    context_length_tensor = torch.empty(batch_size, dtype=torch.int64, device=torch.cuda.current_device())
    context_tokens_tensor = torch.empty(batch_size, seq_len, dtype=torch.int64, device=torch.cuda.current_device())
134
135
136
137
138
    
    # Send variables to all ranks 
    torch.distributed.broadcast(context_length_tensor, 0)
    torch.distributed.broadcast(context_tokens_tensor, 0)
    
139
    return context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs
140

141
def synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs):
142
143
144
145
146
147
    context_length = context_length_tensor.min().item()
    tokens, attention_mask, position_ids = get_batch(context_tokens_tensor)

    batch_token_iterator = sample_sequence_batch(model, context_tokens_tensor,
                                                 context_length_tensor,
                                                 attention_mask, position_ids,
148
                                                 tokens_to_generate,
rprenger's avatar
rprenger committed
149
150
                                                 all_probs)
    for tokens, lengths, output_logits, full_logits in batch_token_iterator:
151
        context_length += 1
rprenger's avatar
rprenger committed
152
153
154
155
156
                
    if mpu.is_pipeline_last_stage():
        src = mpu.get_pipeline_model_parallel_last_rank()
        group = mpu.get_embedding_group()
        torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
157
158
159
160
161
        if all_probs:
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            torch.distributed.broadcast(full_logits, src, group)

rprenger's avatar
rprenger committed
162
163
164
165
166
167
    else:
        if mpu.is_pipeline_first_stage():
            src = mpu.get_pipeline_model_parallel_last_rank()
            group = mpu.get_embedding_group()
            output_logits = torch.empty(tokens.size(0), context_length-1, dtype=torch.float32, device=torch.device("cuda"))
            torch.distributed.broadcast(output_logits, src, group)
rprenger's avatar
rprenger committed
168
169
            
            if all_probs:
170
                args = get_args()
rprenger's avatar
rprenger committed
171
172
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
173
                full_logits = torch.empty(tokens.size(0), context_length, args.padded_vocab_size, dtype=torch.float32, device=torch.device("cuda"))
rprenger's avatar
rprenger committed
174
175
                torch.distributed.broadcast(full_logits, src, group)
     
176
    if tokens is not None:
rprenger's avatar
rprenger committed
177
        return tokens[:, :context_length], output_logits, full_logits 
178

179
def generate(model, sentences=None, tokens_to_generate=0, all_probs=False):
180
    model.eval()
181
    if torch.distributed.get_rank() == 0:
rprenger's avatar
rprenger committed
182
        context_tokens_tensor, context_length_tensor = tokenize_batch(sentences, tokens_to_generate)
183
        send_generate_info(context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
184
    else:
185
        context_length_tensor, context_tokens_tensor, tokens_to_generate, all_probs = receive_generate_info()
186
    
187
    output = synced_generate(model, context_tokens_tensor, context_length_tensor, tokens_to_generate, all_probs)
rprenger's avatar
rprenger committed
188
    
rprenger's avatar
rprenger committed
189
    if output is not None:
rprenger's avatar
rprenger committed
190
        decode_tokens, output_logits, full_logits = output
191
        
192
193
194
        args = get_args()
        tokenizer = get_tokenizer()
        resp_sentences = []
rprenger's avatar
rprenger committed
195
        resp_sentences_seg = []
196
197
198
        
        decode_tokens = decode_tokens.cpu().numpy().tolist()
        for decode_token in decode_tokens:
199
            resp_sentences.append(tokenizer.detokenize(decode_token))
rprenger's avatar
rprenger committed
200
201
202
203
204
205
206
207
            words = []
            for token in decode_token:
                word = tokenizer.tokenizer.decoder[token]
                word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode('utf-8', errors='replace')
                words.append(word)
            resp_sentences_seg.append(words)

        output_logits = output_logits.cpu().numpy().tolist()
rprenger's avatar
rprenger committed
208
209
        if all_probs:
            full_logits = full_logits.cpu().numpy().tolist()
210
       
211
        return resp_sentences, resp_sentences_seg, output_logits, full_logits, decode_tokens 
212

213
214
215
216
217
def generate_samples_eval(model, context, max_gen_length, eos_token_id):
    """
    This function is here to provide an a matching API for a legacy task
    This implementation hasn't been tested yet to make sure it matches
    """
218
    #assert False, "Implementation untested"
219
220
221
222
    args = get_args()
    args.eos_id = eos_token_id
    raw_text_len = len(context)
    resp_sentences = generate(model, [context], max_gen_length)
223
224
225
226
    if resp_sentences:
        return resp_sentences[0][raw_text_len:]
    else:
        return [None]  # This is horrible
227
228

def switch(val1, val2, boolean):
229
    boolean = boolean.type_as(val1)
Mohammad's avatar
Mohammad committed
230
    return (1 - boolean) * val1 + boolean * val2
231

232

233
234
235
236
def forward_step(model, tokens, position_ids, attention_mask, tokentype_ids,
                 layer_past=None, get_key_value=None,
                 forward_method_parallel_output=None):

Jared Casper's avatar
Jared Casper committed
237
238
    # Hidden size changes when not using recompute, need to tell p2p_communicate
    # functions the correct size
239
240
241
    args = get_args()
    orig_seq_length = args.seq_length
    args.seq_length = tokens.shape[1]
242
    args.micro_batch_size = tokens.shape[0]
243

Jared Casper's avatar
Jared Casper committed
244
    input_tensor = recv_forward()
245
246

    # Forward pass through the model.
247
248
249
    unwrapped_model = unwrap_model(
        model, (torchDDP, LocalDDP, Float16Module))
    unwrapped_model.set_input_tensor(input_tensor)
Jared Casper's avatar
Jared Casper committed
250
251
252
253
254
    output_tensor = model(tokens, position_ids, attention_mask,
                          tokentype_ids=tokentype_ids,
                          layer_past=layer_past,
                          get_key_value=get_key_value,
                          forward_method_parallel_output=forward_method_parallel_output)
255
256
257
258

    if get_key_value:
        output_tensor, layer_past = output_tensor

Jared Casper's avatar
Jared Casper committed
259
    send_forward(output_tensor)
260

261
    args.seq_length = orig_seq_length
262
263
264
265
266
    if get_key_value:
        return output_tensor, layer_past
    return output_tensor


267
268
def sample_sequence_batch(model, context_tokens, context_lengths,
                          attention_mask, position_ids,
269
                          tokens_to_generate, all_probs=False, type_ids=None):
270
271
    args = get_args()
    tokenizer = get_tokenizer()
Mohammad's avatar
Mohammad committed
272

273
274
275
    model.eval()
    with torch.no_grad():
        context_length = context_lengths.min().item()
276

Mostofa Patwary's avatar
Mostofa Patwary committed
277
278
        # added eos_id to support the function generate_samples_eval that passes
        # eos_id as an argument and needs termination when that id id found.
279
280
281
282
        if hasattr(args, 'eos_id'):
            eos_id = args.eos_id
        else:
            eos_id = tokenizer.eod
283
284
285
286
287
288
289

        counter = 0

        layer_past = None
        batch_size = context_tokens.size(0)
        is_done = torch.zeros([batch_size]).byte().cuda()
        tokens = context_tokens
rprenger's avatar
rprenger committed
290
        output_logits = None
291
       
292
293
        # Generate enough tokens for the longest sequence
        maxlen = tokens_to_generate + context_lengths.max().item() 
294
295
296
       
        if maxlen > args.seq_length:
            maxlen = args.seq_length
297
        
Neel Kant's avatar
Neel Kant committed
298
        lengths = torch.ones([batch_size]).long().cuda() * maxlen
Mohammad's avatar
Mohammad committed
299

300
        while context_length < maxlen:
301
302
303
304
305
306
            types2use = None
            if counter == 0:
                tokens2use = tokens[:, :context_length]
                positions2use = position_ids[:, :context_length]
                if type_ids is not None:
                    types2use = type_ids[:, :context_length]
307
            else:
308
309
310
311
312
313
                tokens2use = tokens[:, context_length - 1].view(
                    batch_size, -1)
                positions2use = position_ids[:, context_length - 1].view(
                    batch_size, -1)
                if type_ids is not None:
                    types2use = type_ids[:, context_length - 1].view(
314
                        batch_size, -1)
rprenger's avatar
rprenger committed
315
            
316
317
318
319
320
321
322
323
324
325
            output, layer_past = forward_step(model, tokens2use,
                                              positions2use,
                                              attention_mask,
                                              layer_past=layer_past,
                                              get_key_value=True,
                                              tokentype_ids=types2use,
                                              forward_method_parallel_output=False)
            if mpu.is_pipeline_last_stage():
                assert output is not None
                logits = output[:, -1].view(batch_size, -1).contiguous()
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

            if mpu.is_pipeline_last_stage():
                if args.greedy:
                    prev = torch.argmax(logits, dim=-1).view(-1)
                else:
                    logits = logits.float()
                    logits /= args.temperature
                    logits = top_k_logits(logits, top_k=args.top_k,
                                          top_p=args.top_p)
                    log_probs = F.softmax(logits, dim=-1)
                    prev = torch.multinomial(log_probs, num_samples=1).view(-1)

                started = context_lengths <= context_length

                new_tokens = switch(
                    tokens[:, context_length].view(-1), prev, started)
                tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
343
344
345
                
                if output_logits is None:
                    output_context = F.log_softmax(output[:, :context_length, :], 2)
346
                    indices = torch.unsqueeze(tokens[:, 1:context_length+1],2)
rprenger's avatar
rprenger committed
347
                    output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
348
349
                    if all_probs:
                        full_logits = output_context
rprenger's avatar
rprenger committed
350
                else:
rprenger's avatar
rprenger committed
351
                    output_context = F.log_softmax(output, 2)
rprenger's avatar
rprenger committed
352
                    indices = torch.unsqueeze(new_tokens,1).unsqueeze(2)
rprenger's avatar
rprenger committed
353
                    new_output_logits = torch.gather(output_context, 2, indices).squeeze(2)
rprenger's avatar
rprenger committed
354
355
356
                    
                    # TODO(rprenger) we're copying output_logits every time.  Should pre-allocate
                    output_logits = torch.cat([output_logits, new_output_logits],1)
rprenger's avatar
rprenger committed
357
358
                    if all_probs:
                        full_logits = torch.cat([full_logits, output_context], 1)
rprenger's avatar
rprenger committed
359
                
360
361
362
363
364
365
366
367
368
369
370
371
372
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_embedding_group()
                torch.distributed.broadcast(new_tokens, src, group)

                done_token = (prev == eos_id).byte() & started.byte()
                just_finished = (done_token & ~is_done).bool()
                lengths[just_finished.view(-1)] = context_length
                is_done = is_done | done_token

                done = torch.all(is_done)
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
rprenger's avatar
rprenger committed
373
374
375
376
                if all_probs:
                    yield tokens, lengths, output_logits, full_logits
                else:
                    yield tokens, lengths, output_logits, None
377

378
            else:
379
380
381
382
383
384
                if mpu.is_pipeline_first_stage():
                    src = mpu.get_pipeline_model_parallel_last_rank()
                    group = mpu.get_embedding_group()
                    new_tokens = torch.empty_like(tokens[:, context_length])
                    torch.distributed.broadcast(new_tokens, src, group)
                    tokens[:, context_length] = new_tokens
rprenger's avatar
rprenger committed
385
                    yield tokens, None, None, None
386
                else:
rprenger's avatar
rprenger committed
387
                    yield None, None, None, None
388

389
390
391
392
                done = torch.cuda.ByteTensor([0])
                src = mpu.get_pipeline_model_parallel_last_rank()
                group = mpu.get_pipeline_model_parallel_group()
                torch.distributed.broadcast(done, src, group)
393

394
395
            context_length += 1
            counter += 1
396
397
            if done:
                break