LlamaTritonModel.cc 21.5 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/triton_backend/multi_gpu_gpt/ParallelGptTritonModel.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
#include "src/turbomind/triton_backend/llama/LlamaTritonModel.h"
Li Zhang's avatar
Li Zhang committed
22
#include "3rdparty/INIReader.h"
lvhan028's avatar
lvhan028 committed
23
24
25
26
#include "src/turbomind/models/llama/LlamaInstanceComm.h"
#include "src/turbomind/triton_backend/llama/LlamaTritonModelInstance.h"
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
#include "src/turbomind/utils/allocator.h"
Li Zhang's avatar
Li Zhang committed
27
28
#include <mutex>

lvhan028's avatar
lvhan028 committed
29
namespace ft = turbomind;
Li Zhang's avatar
Li Zhang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

std::shared_ptr<AbstractTransformerModel> AbstractTransformerModel::createLlamaModel(std::string inifile)
{
    INIReader reader = INIReader(inifile);
    if (reader.ParseError() < 0) {
        std::cout << "[ERROR] Can't load '" << inifile << "'\n";
        return nullptr;
    }

    const std::string data_type        = reader.Get("ft_instance_hyperparameter", "data_type");
    int               tensor_para_size = reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size");
    std::string       model_dir        = reader.Get("ft_instance_hyperparameter", "model_dir");

    if (data_type == "half" || data_type == "fp16") {
        return std::make_shared<LlamaTritonModel<half>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
50
#ifdef ENABLE_BF16
q.yao's avatar
q.yao committed
51
52
53
54
55
56
57
58
59
60
61
62
    else if (data_type == "bf16") {
#ifdef ENABLE_BF16
        return std::make_shared<LlamaTritonModel<__nv_bfloat16>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
#else
        TM_LOG_ERROR("[ERROR] Turbomind is not built with ENABLE_BF16");
        ft::FT_CHECK(false);
#endif
    }
63
#endif
Li Zhang's avatar
Li Zhang committed
64
65
66
67
68
69
70
71
72
73
74
75
    else {
        return std::make_shared<LlamaTritonModel<float>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
}

template<typename T>
void LlamaTritonModel<T>::handleMissingParams()
{
76
77
78
79
80
    if (kv_head_num_ == 0) {
        kv_head_num_ = head_num_;
        TM_LOG_WARNING("[LlamaTritonModel] `kv_head_num` is not set, default to `head_num` (%d).", (int)kv_head_num_);
    }

81
82
83
84
    if (!attn_params_.max_position_embeddings) {
        attn_params_.max_position_embeddings = 2048;
        TM_LOG_WARNING("[LlamaTritonModel] `max_position_embeddings` is not set, default to %d.",
                       (int)attn_params_.max_position_embeddings);
Li Zhang's avatar
Li Zhang committed
85
86
    }

87
88
89
90
    if (!engine_params_.max_batch_size) {
        engine_params_.max_batch_size = 64;
        TM_LOG_WARNING("[LlamaTritonModel] `max_batch_size` is not set, default to %d.",
                       (int)engine_params_.max_batch_size);
Li Zhang's avatar
Li Zhang committed
91
92
    }

93
94
95
    if (!engine_params_.session_len) {
        engine_params_.session_len = attn_params_.max_position_embeddings;
        TM_LOG_WARNING("[LlamaTritonModel] `session_len` is not set, default to %d.", (int)engine_params_.session_len);
Li Zhang's avatar
Li Zhang committed
96
97
    }

98
99
    if (!engine_params_.max_context_token_num) {
        engine_params_.max_context_token_num = engine_params_.session_len;
lvhan028's avatar
lvhan028 committed
100
        TM_LOG_WARNING("[LlamaTritonModel] `max_context_token_num` is not set, default to %d.",
101
                       (int)engine_params_.max_context_token_num);
Li Zhang's avatar
Li Zhang committed
102
103
    }

104
105
106
    if (engine_params_.max_context_token_num <= engine_params_.max_batch_size) {
        engine_params_.max_context_token_num *= engine_params_.session_len;
        TM_LOG_WARNING("[LlamaTritonModel] `max_context_token_num` = %d.", (int)engine_params_.max_context_token_num);
Li Zhang's avatar
Li Zhang committed
107
108
    }

109
110
111
112
113
114
115
116
    if (!engine_params_.step_length) {
        engine_params_.step_length = 1;
    }

    if (!engine_params_.cache_max_block_count) {
        engine_params_.cache_max_block_count = .95f;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_max_entry_count` is not set, default to %f.",
                       engine_params_.cache_max_block_count);
Li Zhang's avatar
Li Zhang committed
117
118
119
120
121
    }

    if (!cache_block_seq_len_) {
        cache_block_seq_len_ = 128;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_block_seq_len` is not set, default to %d.", cache_block_seq_len_);
Li Zhang's avatar
Li Zhang committed
122
123
    }

124
125
126
127
128
129
130
131
132
133
    if (!engine_params_.cache_chunk_size) {
        engine_params_.cache_chunk_size = engine_params_.cache_max_block_count;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_chunk_size` is not set, default to %d.",
                       (int)engine_params_.cache_chunk_size);
    }

    if (!engine_params_.num_tokens_per_iter) {
        engine_params_.num_tokens_per_iter = engine_params_.max_context_token_num;
        TM_LOG_WARNING("[LlamaTritonModel] `num_tokens_per_iter` is not set, default to `max_context_token_num` (%d).",
                       (int)engine_params_.num_tokens_per_iter);
Li Zhang's avatar
Li Zhang committed
134
135
136
137
138
139
140
    }
}

template<typename T>
LlamaTritonModel<T>::LlamaTritonModel(size_t      tensor_para_size,
                                      size_t      pipeline_para_size,
                                      int         enable_custom_all_reduce,
141
142
                                      std::string model_dir,
                                      std::string config):
Li Zhang's avatar
Li Zhang committed
143
144
145
146
147
    tensor_para_size_(tensor_para_size),
    pipeline_para_size_(pipeline_para_size),
    shared_weights_(std::vector<std::shared_ptr<ft::LlamaWeight<T>>>(ft::getDeviceCount())),
    enable_custom_all_reduce_(enable_custom_all_reduce)
{
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    INIReader reader;
    FT_CHECK_WITH_INFO((config.empty() ^ model_dir.empty()), "invalid init options");

    if (!config.empty()) {
        std::FILE* tmpf = std::tmpfile();
        std::fputs(config.c_str(), tmpf);
        std::rewind(tmpf);
        reader = INIReader(tmpf);
        if (reader.ParseError() < 0) {
            TM_LOG_ERROR("[ERROR] Can't init with config %s", config.c_str());
            ft::FT_CHECK(false);
        }
    }

    if (!model_dir.empty()) {
        model_dir_ = model_dir;
        const std::string inifile{model_dir + "/config.ini"};
        reader = INIReader(inifile);
        if (reader.ParseError() < 0) {
            TM_LOG_ERROR("[ERROR] Can't load %s", inifile.c_str());
            ft::FT_CHECK(false);
        }
Li Zhang's avatar
Li Zhang committed
170
171
    }

172
173
174
175
176
177
178
179
180
181
    model_name_          = reader.Get("llama", "model_name");
    head_num_            = reader.GetInteger("llama", "head_num");
    kv_head_num_         = reader.GetInteger("llama", "kv_head_num", 0);
    size_per_head_       = reader.GetInteger("llama", "size_per_head");
    inter_size_          = reader.GetInteger("llama", "inter_size");
    num_layer_           = reader.GetInteger("llama", "num_layer");
    vocab_size_          = reader.GetInteger("llama", "vocab_size");
    norm_eps_            = reader.GetFloat("llama", "norm_eps");
    start_id_            = reader.GetInteger("llama", "start_id");
    end_id_              = reader.GetInteger("llama", "end_id");
182
183
    // use_context_fmha_    = reader.GetInteger("llama", "use_context_fmha", 1);
    use_context_fmha_    = 0;
184
    cache_block_seq_len_ = reader.GetInteger("llama", "cache_block_seq_len", 0);
Li Zhang's avatar
Li Zhang committed
185
186
187
188

    attn_bias_    = reader.GetInteger("llama", "attn_bias", 0);
    quant_policy_ = reader.GetInteger("llama", "quant_policy", 0);
    group_size_   = reader.GetInteger("llama", "group_size", 0);
Li Zhang's avatar
Li Zhang committed
189

Li Zhang's avatar
Li Zhang committed
190
191
    // rotary embedding parameters
    attn_params_.rotary_embedding_dim    = reader.GetInteger("llama", "rotary_embedding");
Lyu Han's avatar
Lyu Han committed
192
    attn_params_.rotary_embedding_base   = reader.GetFloat("llama", "rope_theta", 10000.0f);
Li Zhang's avatar
Li Zhang committed
193
    attn_params_.rope_scaling_factor     = reader.GetFloat("llama", "rope_scaling_factor", 0.f);
194
    attn_params_.max_position_embeddings = reader.GetInteger("llama", "max_position_embeddings", 0);
Li Zhang's avatar
Li Zhang committed
195
    // attn_params_.use_dynamic_ntk         = reader.GetInteger("llama", "use_dynamic_ntk", 0);
196
    attn_params_.use_logn_attn = reader.GetInteger("llama", "use_logn_attn", 0);
197

198
199
200
201
    engine_params_.max_batch_size        = reader.GetInteger("llama", "max_batch_size", 0);
    engine_params_.max_context_token_num = reader.GetInteger("llama", "max_context_token_num", 0);
    engine_params_.session_len           = reader.GetInteger("llama", "session_len", 0);
    engine_params_.step_length           = reader.GetInteger("llama", "step_length", 0);
Li Zhang's avatar
Li Zhang committed
202

203
204
205
206
207
208
209
210
    engine_params_.cache_max_block_count = reader.GetFloat("llama", "cache_max_entry_count", 0);
    engine_params_.cache_chunk_size      = reader.GetInteger("llama", "cache_chunk_size", 0);

    engine_params_.num_tokens_per_iter   = reader.GetInteger("llama", "num_tokens_per_iter", 0);
    engine_params_.extra_tokens_per_iter = reader.GetInteger("llama", "extra_tokens_per_iter", 0);
    engine_params_.max_prefill_iters     = reader.GetInteger("llama", "max_prefill_iters", 1);

    handleMissingParams();
Li Zhang's avatar
Li Zhang committed
211
212
213
214
215
216
217
218
219
220
221
222

    shared_state_          = std::make_shared<typename ft::LlamaV2<T>::SharedState>();
    shared_state_->barrier = std::make_shared<ft::Barrier>(tensor_para_size);

    const auto device_count = ft::getDeviceCount();
    shared_instances_.resize(device_count);
    shared_mutexes_.resize(device_count);

    const std::string weight_type_str = reader.Get("llama", "weight_type");
    if (weight_type_str == "fp16") {
        weight_type_ = ft::WeightType::kFP16;
    }
q.yao's avatar
q.yao committed
223
224
225
    else if (weight_type_str == "bf16") {
        weight_type_ = ft::WeightType::kBF16;
    }
Li Zhang's avatar
Li Zhang committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    else if (weight_type_str == "fp32") {
        weight_type_ = ft::WeightType::kFP32;
    }
    else if (weight_type_str == "int8") {
        weight_type_ = ft::WeightType::kINT8;
    }
    else if (weight_type_str == "int4") {
        weight_type_ = ft::WeightType::kINT4;
    }
    else {
        std::cout << "[ERROR] Unsupported weight type: '" << weight_type_str << "'\n";
        ft::FT_CHECK(0);
    }
}

template<typename T>
std::unique_ptr<LlamaTritonSharedModelInstance<T>> LlamaTritonModel<T>::createSharedModelInstance(
    int                                                               device_id,
    int                                                               rank,
    std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
    std::shared_ptr<ft::AbstractCustomComm>                           custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    /// TODO: this stream handle is leaked
    cudaStream_t stream{};
    ft::check_cuda_error(cudaStreamCreate(&stream));

    allocator->setStream(stream);

    cublasHandle_t   cublas_handle;
    cublasLtHandle_t cublaslt_handle;

    cublasCreate(&cublas_handle);
xiabo's avatar
xiabo committed
264
    // cublasLtCreate(&cublaslt_handle);
Li Zhang's avatar
Li Zhang committed
265
266
267
268
269
270
271
272
273
274
275
    cublasSetStream(cublas_handle, stream);

    std::unique_ptr<ft::cublasAlgoMap>   cublas_algo_map(new ft::cublasAlgoMap("gemm_config.in"));
    std::unique_ptr<std::mutex>          cublas_wrapper_mutex(new std::mutex());
    std::unique_ptr<ft::cublasMMWrapper> cublas_wrapper(new ft::cublasMMWrapper(
        cublas_handle, cublaslt_handle, stream, cublas_algo_map.get(), cublas_wrapper_mutex.get(), allocator.get()));

    std::unique_ptr<cudaDeviceProp> cuda_device_prop_ptr(new cudaDeviceProp);
    ft::check_cuda_error(cudaGetDeviceProperties(cuda_device_prop_ptr.get(), device_id));

    if (std::is_same<T, half>::value) {
xiabo's avatar
xiabo committed
276
277
        // cublas_wrapper->setGemmConfig(CUDA_R_16F, CUDA_R_16F, CUDA_R_16F, CUDA_R_32F);
        cublas_wrapper->setGemmConfig(CUDA_R_16F, CUDA_R_16F, CUDA_R_16F, CUDA_R_16F);
Li Zhang's avatar
Li Zhang committed
278
279
280
281
    }
    else if (std::is_same<T, float>::value) {
        cublas_wrapper->setFP32GemmConfig();
    }
q.yao's avatar
q.yao committed
282
283
284
285
286
#ifdef ENABLE_BF16
    else if (std::is_same<T, __nv_bfloat16>::value) {
        cublas_wrapper->setBF16GemmConfig();
    }
#endif
Li Zhang's avatar
Li Zhang committed
287
288
289
290
291

    ft::NcclParam tensor_para   = nccl_params.first[comms_rank];
    ft::NcclParam pipeline_para = nccl_params.second[comms_rank];

    ft::FT_CHECK(tensor_para.world_size_ == tensor_para_size_);
Li Zhang's avatar
Li Zhang committed
292
    ft::FT_CHECK(pipeline_para.world_size_ == pipeline_para_size_);
Li Zhang's avatar
Li Zhang committed
293
294

    auto llama = std::make_unique<ft::LlamaV2<T>>(head_num_,
295
                                                  kv_head_num_,
Li Zhang's avatar
Li Zhang committed
296
297
298
299
300
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
                                                  vocab_size_,
                                                  norm_eps_,
301
                                                  attn_params_,
Li Zhang's avatar
Li Zhang committed
302
303
                                                  start_id_,
                                                  end_id_,
Li Zhang's avatar
Li Zhang committed
304
                                                  cache_block_seq_len_,
305
                                                  quant_policy_,
Li Zhang's avatar
Li Zhang committed
306
                                                  use_context_fmha_,
307
                                                  engine_params_,
Li Zhang's avatar
Li Zhang committed
308
309
310
311
312
313
314
315
316
317
                                                  shared_state_,
                                                  shared_weights_[device_id].get(),
                                                  tensor_para,
                                                  stream,
                                                  cublas_wrapper.get(),
                                                  allocator.get(),
                                                  false,  // is_free_buffer_after_forward,
                                                  cuda_device_prop_ptr.get());

    return std::make_unique<LlamaTritonSharedModelInstance<T>>(
Lyu Han's avatar
Lyu Han committed
318
        LlamaTritonSharedModelInstance<T>{std::move(allocator),
Li Zhang's avatar
Li Zhang committed
319
320
321
322
                                          std::move(cublas_algo_map),
                                          std::move(cublas_wrapper_mutex),
                                          std::move(cublas_wrapper),
                                          std::move(cuda_device_prop_ptr),
Lyu Han's avatar
Lyu Han committed
323
324
                                          shared_weights_[device_id],
                                          std::move(llama),
325
                                          engine_params_.session_len});
Li Zhang's avatar
Li Zhang committed
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
}

template<typename T>
std::unique_ptr<AbstractTransformerModelInstance>
LlamaTritonModel<T>::createModelInstance(int                                                               device_id,
                                         int                                                               rank,
                                         cudaStream_t                                                      stream,
                                         std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
                                         std::shared_ptr<ft::AbstractCustomComm> custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    // const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::shared_ptr<LlamaTritonSharedModelInstance<T>> instance;
    {
        std::lock_guard<std::mutex> lock(shared_mutexes_[device_id]);
342
        instance = shared_instances_[device_id];
Li Zhang's avatar
Li Zhang committed
343
344
        if (!instance) {
            instance = createSharedModelInstance(device_id, rank, nccl_params, custom_all_reduce_comm);
Chen Xin's avatar
Chen Xin committed
345
            instance->llm->setFfiLock(ffi_lock_);
Li Zhang's avatar
Li Zhang committed
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
            shared_instances_[device_id] = instance;
        }
    }

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    allocator->setStream(stream);

    return std::make_unique<LlamaTritonModelInstance<T>>(instance, std::move(allocator));
}

template<typename T>
void LlamaTritonModel<T>::createSharedWeights(int device_id, int rank)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int tensor_para_rank   = rank % tensor_para_size_;
    const int pipeline_para_rank = rank / tensor_para_size_;
    ft::FT_CHECK(pipeline_para_size_ == 1 && pipeline_para_rank == 0);
365
366
367
    shared_weights_[device_id] = std::make_shared<ft::LlamaWeight<T>>(head_num_,
                                                                      kv_head_num_,
                                                                      size_per_head_,
Li Zhang's avatar
Li Zhang committed
368
369
370
                                                                      inter_size_,
                                                                      vocab_size_,
                                                                      num_layer_,
Li Zhang's avatar
Li Zhang committed
371
                                                                      attn_bias_,
372
373
                                                                      weight_type_,
                                                                      group_size_,
Li Zhang's avatar
Li Zhang committed
374
                                                                      tensor_para_size_,
375
                                                                      tensor_para_rank);
376
377
378
379
    // model inited with model_dir
    if (model_dir_ != "") {
        shared_weights_[device_id]->loadModel(model_dir_);
    }
Li Zhang's avatar
Li Zhang committed
380
381
382
    return;
}

383
384
385
386
387
388
389
390
391
392
393
394
395
396
template<typename T>
TensorMap LlamaTritonModel<T>::getParams(int deviceId, int rank)
{
    ft::check_cuda_error(cudaSetDevice(deviceId));
    // shared_weight should be created before getParams
    ft::FT_CHECK(shared_weights_[deviceId] != nullptr);
    ft::TensorMap output = shared_weights_[deviceId]->getParams();
    TensorMap     result;
    for (auto [name, tensor] : output) {
        result.emplace(name, triton::Tensor{tensor.where, tensor.type, tensor.shape, tensor.data});
    }
    return result;
}

Li Zhang's avatar
Li Zhang committed
397
398
399
400
401
template<typename T>
std::string LlamaTritonModel<T>::toString()
{
    std::stringstream ss;
    ss << "Model: "
402
403
       << "\nhead_num: " << head_num_ << "\nkv_head_num: " << kv_head_num_ << "\nsize_per_head: " << size_per_head_
       << "\ninter_size: " << inter_size_ << "\nnum_layer: " << num_layer_ << "\nvocab_size: " << vocab_size_
404
405
406
407
408
       << "\nattn_bias: " << attn_bias_ << "\nmax_batch_size: " << engine_params_.max_batch_size
       << "\nmax_context_token_num: " << engine_params_.max_context_token_num
       << "\nsession_len: " << engine_params_.session_len << "\nstep_length: " << engine_params_.step_length
       << "\ncache_max_entry_count: " << engine_params_.cache_max_block_count
       << "\ncache_block_seq_len: " << cache_block_seq_len_ << "\ncache_chunk_size: " << engine_params_.cache_chunk_size
Li Zhang's avatar
Li Zhang committed
409
410
411
412
413
       << "\nuse_context_fmha: " << use_context_fmha_ << "\nstart_id: " << start_id_
       << "\ntensor_para_size: " << tensor_para_size_ << "\npipeline_para_size: " << pipeline_para_size_
       << "\nenable_custom_all_reduce: " << enable_custom_all_reduce_ << "\nmodel_name: " << model_name_
       << "\nmodel_dir: " << model_dir_ << "\nquant_policy: " << quant_policy_ << "\ngroup_size: " << group_size_
       << std::endl;
Li Zhang's avatar
Li Zhang committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434

    return ss.str();
}

template<typename T>
void LlamaTritonModel<T>::createCustomComms(
    std::vector<std::shared_ptr<ft::AbstractCustomComm>>* custom_all_reduce_comms, int world_size)
{
    using commDataType = typename ft::CustomARCommTypeConverter<T>::Type;
    ft::initCustomAllReduceComm<commDataType>(custom_all_reduce_comms, enable_custom_all_reduce_, world_size);
}

template<typename T>
std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>>
LlamaTritonModel<T>::createNcclParams(const int node_id, const int device_id_start, const bool multi_node)
{
    const auto device_count     = ft::getDeviceCount();
    bool       need_nccl_params = false;
    // create nccl group when there are non-occupied devices
    for (int i = 0; i < device_count; ++i) {
        std::lock_guard<std::mutex> lock(shared_mutexes_[i]);
435
        if (shared_instances_[i] == nullptr) {
Li Zhang's avatar
Li Zhang committed
436
437
438
439
440
441
442
443
            need_nccl_params = true;
            break;
        }
    }
    if (need_nccl_params) {
        return AbstractTransformerModel::createNcclParams(node_id, device_id_start, multi_node);
    }
    else {
lvhan028's avatar
lvhan028 committed
444
        TM_LOG_INFO("Skipping NCCL param creation.");
Li Zhang's avatar
Li Zhang committed
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

        const int tensor_para_size   = getTensorParaSize();
        const int pipeline_para_size = getPipelineParaSize();
        const int local_comm_size    = multi_node ? device_count : tensor_para_size * pipeline_para_size;

        std::vector<ft::NcclParam> tensor_para_params(local_comm_size);
        std::vector<ft::NcclParam> pipeline_para_params(local_comm_size);
        return {std::move(tensor_para_params), std::move(pipeline_para_params)};
    }
}

template<typename T>
std::unique_ptr<ft::AbstractInstanceComm> LlamaTritonModel<T>::createInstanceComm(int size)
{
    return std::make_unique<ft::LlamaInstanceComm>(size);
}

template<typename T>
int LlamaTritonModel<T>::getTensorParaSize()
{
    return tensor_para_size_;
}

template<typename T>
int LlamaTritonModel<T>::getPipelineParaSize()
{
    return pipeline_para_size_;
}

template struct LlamaTritonModel<float>;
template struct LlamaTritonModel<half>;
q.yao's avatar
q.yao committed
476
477
478
#ifdef ENABLE_BF16
template struct LlamaTritonModel<__nv_bfloat16>;
#endif