LlamaTritonModel.cc 20.5 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/triton_backend/multi_gpu_gpt/ParallelGptTritonModel.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
#include "src/turbomind/triton_backend/llama/LlamaTritonModel.h"
Li Zhang's avatar
Li Zhang committed
22
#include "3rdparty/INIReader.h"
lvhan028's avatar
lvhan028 committed
23
24
25
26
#include "src/turbomind/models/llama/LlamaInstanceComm.h"
#include "src/turbomind/triton_backend/llama/LlamaTritonModelInstance.h"
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
#include "src/turbomind/utils/allocator.h"
Li Zhang's avatar
Li Zhang committed
27
28
#include <mutex>

lvhan028's avatar
lvhan028 committed
29
namespace ft = turbomind;
Li Zhang's avatar
Li Zhang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

std::shared_ptr<AbstractTransformerModel> AbstractTransformerModel::createLlamaModel(std::string inifile)
{
    INIReader reader = INIReader(inifile);
    if (reader.ParseError() < 0) {
        std::cout << "[ERROR] Can't load '" << inifile << "'\n";
        return nullptr;
    }

    const std::string data_type        = reader.Get("ft_instance_hyperparameter", "data_type");
    int               tensor_para_size = reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size");
    std::string       model_dir        = reader.Get("ft_instance_hyperparameter", "model_dir");

    if (data_type == "half" || data_type == "fp16") {
        return std::make_shared<LlamaTritonModel<half>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
    else {
        return std::make_shared<LlamaTritonModel<float>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
}

template<typename T>
void LlamaTritonModel<T>::handleMissingParams()
{
62
63
64
65
66
    if (kv_head_num_ == 0) {
        kv_head_num_ = head_num_;
        TM_LOG_WARNING("[LlamaTritonModel] `kv_head_num` is not set, default to `head_num` (%d).", (int)kv_head_num_);
    }

67
68
69
70
    if (!attn_params_.max_position_embeddings) {
        attn_params_.max_position_embeddings = 2048;
        TM_LOG_WARNING("[LlamaTritonModel] `max_position_embeddings` is not set, default to %d.",
                       (int)attn_params_.max_position_embeddings);
Li Zhang's avatar
Li Zhang committed
71
72
    }

73
74
75
76
    if (!engine_params_.max_batch_size) {
        engine_params_.max_batch_size = 64;
        TM_LOG_WARNING("[LlamaTritonModel] `max_batch_size` is not set, default to %d.",
                       (int)engine_params_.max_batch_size);
Li Zhang's avatar
Li Zhang committed
77
78
    }

79
80
81
    if (!engine_params_.session_len) {
        engine_params_.session_len = attn_params_.max_position_embeddings;
        TM_LOG_WARNING("[LlamaTritonModel] `session_len` is not set, default to %d.", (int)engine_params_.session_len);
Li Zhang's avatar
Li Zhang committed
82
83
    }

84
85
    if (!engine_params_.max_context_token_num) {
        engine_params_.max_context_token_num = engine_params_.session_len;
lvhan028's avatar
lvhan028 committed
86
        TM_LOG_WARNING("[LlamaTritonModel] `max_context_token_num` is not set, default to %d.",
87
                       (int)engine_params_.max_context_token_num);
Li Zhang's avatar
Li Zhang committed
88
89
    }

90
91
92
    if (engine_params_.max_context_token_num <= engine_params_.max_batch_size) {
        engine_params_.max_context_token_num *= engine_params_.session_len;
        TM_LOG_WARNING("[LlamaTritonModel] `max_context_token_num` = %d.", (int)engine_params_.max_context_token_num);
Li Zhang's avatar
Li Zhang committed
93
94
    }

95
96
97
98
99
100
101
102
    if (!engine_params_.step_length) {
        engine_params_.step_length = 1;
    }

    if (!engine_params_.cache_max_block_count) {
        engine_params_.cache_max_block_count = .95f;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_max_entry_count` is not set, default to %f.",
                       engine_params_.cache_max_block_count);
Li Zhang's avatar
Li Zhang committed
103
104
105
106
107
    }

    if (!cache_block_seq_len_) {
        cache_block_seq_len_ = 128;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_block_seq_len` is not set, default to %d.", cache_block_seq_len_);
Li Zhang's avatar
Li Zhang committed
108
109
    }

110
111
112
113
114
115
116
117
118
119
    if (!engine_params_.cache_chunk_size) {
        engine_params_.cache_chunk_size = engine_params_.cache_max_block_count;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_chunk_size` is not set, default to %d.",
                       (int)engine_params_.cache_chunk_size);
    }

    if (!engine_params_.num_tokens_per_iter) {
        engine_params_.num_tokens_per_iter = engine_params_.max_context_token_num;
        TM_LOG_WARNING("[LlamaTritonModel] `num_tokens_per_iter` is not set, default to `max_context_token_num` (%d).",
                       (int)engine_params_.num_tokens_per_iter);
Li Zhang's avatar
Li Zhang committed
120
121
122
123
124
125
126
    }
}

template<typename T>
LlamaTritonModel<T>::LlamaTritonModel(size_t      tensor_para_size,
                                      size_t      pipeline_para_size,
                                      int         enable_custom_all_reduce,
127
128
                                      std::string model_dir,
                                      std::string config):
Li Zhang's avatar
Li Zhang committed
129
130
131
132
133
    tensor_para_size_(tensor_para_size),
    pipeline_para_size_(pipeline_para_size),
    shared_weights_(std::vector<std::shared_ptr<ft::LlamaWeight<T>>>(ft::getDeviceCount())),
    enable_custom_all_reduce_(enable_custom_all_reduce)
{
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    INIReader reader;
    FT_CHECK_WITH_INFO((config.empty() ^ model_dir.empty()), "invalid init options");

    if (!config.empty()) {
        std::FILE* tmpf = std::tmpfile();
        std::fputs(config.c_str(), tmpf);
        std::rewind(tmpf);
        reader = INIReader(tmpf);
        if (reader.ParseError() < 0) {
            TM_LOG_ERROR("[ERROR] Can't init with config %s", config.c_str());
            ft::FT_CHECK(false);
        }
    }

    if (!model_dir.empty()) {
        model_dir_ = model_dir;
        const std::string inifile{model_dir + "/config.ini"};
        reader = INIReader(inifile);
        if (reader.ParseError() < 0) {
            TM_LOG_ERROR("[ERROR] Can't load %s", inifile.c_str());
            ft::FT_CHECK(false);
        }
Li Zhang's avatar
Li Zhang committed
156
157
    }

158
159
160
161
162
163
164
165
166
167
168
169
    model_name_          = reader.Get("llama", "model_name");
    head_num_            = reader.GetInteger("llama", "head_num");
    kv_head_num_         = reader.GetInteger("llama", "kv_head_num", 0);
    size_per_head_       = reader.GetInteger("llama", "size_per_head");
    inter_size_          = reader.GetInteger("llama", "inter_size");
    num_layer_           = reader.GetInteger("llama", "num_layer");
    vocab_size_          = reader.GetInteger("llama", "vocab_size");
    norm_eps_            = reader.GetFloat("llama", "norm_eps");
    start_id_            = reader.GetInteger("llama", "start_id");
    end_id_              = reader.GetInteger("llama", "end_id");
    use_context_fmha_    = reader.GetInteger("llama", "use_context_fmha", 1);
    cache_block_seq_len_ = reader.GetInteger("llama", "cache_block_seq_len", 0);
Li Zhang's avatar
Li Zhang committed
170
171
172
173

    attn_bias_    = reader.GetInteger("llama", "attn_bias", 0);
    quant_policy_ = reader.GetInteger("llama", "quant_policy", 0);
    group_size_   = reader.GetInteger("llama", "group_size", 0);
Li Zhang's avatar
Li Zhang committed
174

Li Zhang's avatar
Li Zhang committed
175
176
    // rotary embedding parameters
    attn_params_.rotary_embedding_dim    = reader.GetInteger("llama", "rotary_embedding");
Lyu Han's avatar
Lyu Han committed
177
    attn_params_.rotary_embedding_base   = reader.GetFloat("llama", "rope_theta", 10000.0f);
Li Zhang's avatar
Li Zhang committed
178
    attn_params_.rope_scaling_factor     = reader.GetFloat("llama", "rope_scaling_factor", 0.f);
179
    attn_params_.max_position_embeddings = reader.GetInteger("llama", "max_position_embeddings", 0);
Li Zhang's avatar
Li Zhang committed
180
    // attn_params_.use_dynamic_ntk         = reader.GetInteger("llama", "use_dynamic_ntk", 0);
181
    attn_params_.use_logn_attn = reader.GetInteger("llama", "use_logn_attn", 0);
182

183
184
185
186
    engine_params_.max_batch_size        = reader.GetInteger("llama", "max_batch_size", 0);
    engine_params_.max_context_token_num = reader.GetInteger("llama", "max_context_token_num", 0);
    engine_params_.session_len           = reader.GetInteger("llama", "session_len", 0);
    engine_params_.step_length           = reader.GetInteger("llama", "step_length", 0);
Li Zhang's avatar
Li Zhang committed
187

188
189
190
191
192
193
194
195
    engine_params_.cache_max_block_count = reader.GetFloat("llama", "cache_max_entry_count", 0);
    engine_params_.cache_chunk_size      = reader.GetInteger("llama", "cache_chunk_size", 0);

    engine_params_.num_tokens_per_iter   = reader.GetInteger("llama", "num_tokens_per_iter", 0);
    engine_params_.extra_tokens_per_iter = reader.GetInteger("llama", "extra_tokens_per_iter", 0);
    engine_params_.max_prefill_iters     = reader.GetInteger("llama", "max_prefill_iters", 1);

    handleMissingParams();
Li Zhang's avatar
Li Zhang committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267

    shared_state_          = std::make_shared<typename ft::LlamaV2<T>::SharedState>();
    shared_state_->barrier = std::make_shared<ft::Barrier>(tensor_para_size);

    const auto device_count = ft::getDeviceCount();
    shared_instances_.resize(device_count);
    shared_mutexes_.resize(device_count);

    const std::string weight_type_str = reader.Get("llama", "weight_type");
    if (weight_type_str == "fp16") {
        weight_type_ = ft::WeightType::kFP16;
    }
    else if (weight_type_str == "fp32") {
        weight_type_ = ft::WeightType::kFP32;
    }
    else if (weight_type_str == "int8") {
        weight_type_ = ft::WeightType::kINT8;
    }
    else if (weight_type_str == "int4") {
        weight_type_ = ft::WeightType::kINT4;
    }
    else {
        std::cout << "[ERROR] Unsupported weight type: '" << weight_type_str << "'\n";
        ft::FT_CHECK(0);
    }
}

template<typename T>
std::unique_ptr<LlamaTritonSharedModelInstance<T>> LlamaTritonModel<T>::createSharedModelInstance(
    int                                                               device_id,
    int                                                               rank,
    std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
    std::shared_ptr<ft::AbstractCustomComm>                           custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    /// TODO: this stream handle is leaked
    cudaStream_t stream{};
    ft::check_cuda_error(cudaStreamCreate(&stream));

    allocator->setStream(stream);

    cublasHandle_t   cublas_handle;
    cublasLtHandle_t cublaslt_handle;

    cublasCreate(&cublas_handle);
    cublasLtCreate(&cublaslt_handle);
    cublasSetStream(cublas_handle, stream);

    std::unique_ptr<ft::cublasAlgoMap>   cublas_algo_map(new ft::cublasAlgoMap("gemm_config.in"));
    std::unique_ptr<std::mutex>          cublas_wrapper_mutex(new std::mutex());
    std::unique_ptr<ft::cublasMMWrapper> cublas_wrapper(new ft::cublasMMWrapper(
        cublas_handle, cublaslt_handle, stream, cublas_algo_map.get(), cublas_wrapper_mutex.get(), allocator.get()));

    std::unique_ptr<cudaDeviceProp> cuda_device_prop_ptr(new cudaDeviceProp);
    ft::check_cuda_error(cudaGetDeviceProperties(cuda_device_prop_ptr.get(), device_id));

    if (std::is_same<T, half>::value) {
        cublas_wrapper->setGemmConfig(CUDA_R_16F, CUDA_R_16F, CUDA_R_16F, CUDA_R_32F);
    }
    else if (std::is_same<T, float>::value) {
        cublas_wrapper->setFP32GemmConfig();
    }

    ft::NcclParam tensor_para   = nccl_params.first[comms_rank];
    ft::NcclParam pipeline_para = nccl_params.second[comms_rank];

    ft::FT_CHECK(tensor_para.world_size_ == tensor_para_size_);
Li Zhang's avatar
Li Zhang committed
268
    ft::FT_CHECK(pipeline_para.world_size_ == pipeline_para_size_);
Li Zhang's avatar
Li Zhang committed
269
270

    auto llama = std::make_unique<ft::LlamaV2<T>>(head_num_,
271
                                                  kv_head_num_,
Li Zhang's avatar
Li Zhang committed
272
273
274
275
276
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
                                                  vocab_size_,
                                                  norm_eps_,
277
                                                  attn_params_,
Li Zhang's avatar
Li Zhang committed
278
279
                                                  start_id_,
                                                  end_id_,
Li Zhang's avatar
Li Zhang committed
280
                                                  cache_block_seq_len_,
281
                                                  quant_policy_,
Li Zhang's avatar
Li Zhang committed
282
                                                  use_context_fmha_,
283
                                                  engine_params_,
Li Zhang's avatar
Li Zhang committed
284
285
286
287
288
289
290
291
292
293
                                                  shared_state_,
                                                  shared_weights_[device_id].get(),
                                                  tensor_para,
                                                  stream,
                                                  cublas_wrapper.get(),
                                                  allocator.get(),
                                                  false,  // is_free_buffer_after_forward,
                                                  cuda_device_prop_ptr.get());

    return std::make_unique<LlamaTritonSharedModelInstance<T>>(
Lyu Han's avatar
Lyu Han committed
294
        LlamaTritonSharedModelInstance<T>{std::move(allocator),
Li Zhang's avatar
Li Zhang committed
295
296
297
298
                                          std::move(cublas_algo_map),
                                          std::move(cublas_wrapper_mutex),
                                          std::move(cublas_wrapper),
                                          std::move(cuda_device_prop_ptr),
Lyu Han's avatar
Lyu Han committed
299
300
                                          shared_weights_[device_id],
                                          std::move(llama),
301
                                          engine_params_.session_len});
Li Zhang's avatar
Li Zhang committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
}

template<typename T>
std::unique_ptr<AbstractTransformerModelInstance>
LlamaTritonModel<T>::createModelInstance(int                                                               device_id,
                                         int                                                               rank,
                                         cudaStream_t                                                      stream,
                                         std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
                                         std::shared_ptr<ft::AbstractCustomComm> custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    // const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::shared_ptr<LlamaTritonSharedModelInstance<T>> instance;
    {
        std::lock_guard<std::mutex> lock(shared_mutexes_[device_id]);
318
        instance = shared_instances_[device_id];
Li Zhang's avatar
Li Zhang committed
319
320
        if (!instance) {
            instance = createSharedModelInstance(device_id, rank, nccl_params, custom_all_reduce_comm);
Chen Xin's avatar
Chen Xin committed
321
            instance->llm->setFfiLock(ffi_lock_);
Li Zhang's avatar
Li Zhang committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
            shared_instances_[device_id] = instance;
        }
    }

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    allocator->setStream(stream);

    return std::make_unique<LlamaTritonModelInstance<T>>(instance, std::move(allocator));
}

template<typename T>
void LlamaTritonModel<T>::createSharedWeights(int device_id, int rank)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int tensor_para_rank   = rank % tensor_para_size_;
    const int pipeline_para_rank = rank / tensor_para_size_;
    ft::FT_CHECK(pipeline_para_size_ == 1 && pipeline_para_rank == 0);
341
342
343
    shared_weights_[device_id] = std::make_shared<ft::LlamaWeight<T>>(head_num_,
                                                                      kv_head_num_,
                                                                      size_per_head_,
Li Zhang's avatar
Li Zhang committed
344
345
346
                                                                      inter_size_,
                                                                      vocab_size_,
                                                                      num_layer_,
Li Zhang's avatar
Li Zhang committed
347
                                                                      attn_bias_,
348
349
                                                                      weight_type_,
                                                                      group_size_,
Li Zhang's avatar
Li Zhang committed
350
                                                                      tensor_para_size_,
351
                                                                      tensor_para_rank);
352
353
354
355
    // model inited with model_dir
    if (model_dir_ != "") {
        shared_weights_[device_id]->loadModel(model_dir_);
    }
Li Zhang's avatar
Li Zhang committed
356
357
358
    return;
}

359
360
361
362
363
364
365
366
367
368
369
370
371
372
template<typename T>
TensorMap LlamaTritonModel<T>::getParams(int deviceId, int rank)
{
    ft::check_cuda_error(cudaSetDevice(deviceId));
    // shared_weight should be created before getParams
    ft::FT_CHECK(shared_weights_[deviceId] != nullptr);
    ft::TensorMap output = shared_weights_[deviceId]->getParams();
    TensorMap     result;
    for (auto [name, tensor] : output) {
        result.emplace(name, triton::Tensor{tensor.where, tensor.type, tensor.shape, tensor.data});
    }
    return result;
}

Li Zhang's avatar
Li Zhang committed
373
374
375
376
377
template<typename T>
std::string LlamaTritonModel<T>::toString()
{
    std::stringstream ss;
    ss << "Model: "
378
379
       << "\nhead_num: " << head_num_ << "\nkv_head_num: " << kv_head_num_ << "\nsize_per_head: " << size_per_head_
       << "\ninter_size: " << inter_size_ << "\nnum_layer: " << num_layer_ << "\nvocab_size: " << vocab_size_
380
381
382
383
384
       << "\nattn_bias: " << attn_bias_ << "\nmax_batch_size: " << engine_params_.max_batch_size
       << "\nmax_context_token_num: " << engine_params_.max_context_token_num
       << "\nsession_len: " << engine_params_.session_len << "\nstep_length: " << engine_params_.step_length
       << "\ncache_max_entry_count: " << engine_params_.cache_max_block_count
       << "\ncache_block_seq_len: " << cache_block_seq_len_ << "\ncache_chunk_size: " << engine_params_.cache_chunk_size
Li Zhang's avatar
Li Zhang committed
385
386
387
388
389
       << "\nuse_context_fmha: " << use_context_fmha_ << "\nstart_id: " << start_id_
       << "\ntensor_para_size: " << tensor_para_size_ << "\npipeline_para_size: " << pipeline_para_size_
       << "\nenable_custom_all_reduce: " << enable_custom_all_reduce_ << "\nmodel_name: " << model_name_
       << "\nmodel_dir: " << model_dir_ << "\nquant_policy: " << quant_policy_ << "\ngroup_size: " << group_size_
       << std::endl;
Li Zhang's avatar
Li Zhang committed
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    return ss.str();
}

template<typename T>
void LlamaTritonModel<T>::createCustomComms(
    std::vector<std::shared_ptr<ft::AbstractCustomComm>>* custom_all_reduce_comms, int world_size)
{
    using commDataType = typename ft::CustomARCommTypeConverter<T>::Type;
    ft::initCustomAllReduceComm<commDataType>(custom_all_reduce_comms, enable_custom_all_reduce_, world_size);
}

template<typename T>
std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>>
LlamaTritonModel<T>::createNcclParams(const int node_id, const int device_id_start, const bool multi_node)
{
    const auto device_count     = ft::getDeviceCount();
    bool       need_nccl_params = false;
    // create nccl group when there are non-occupied devices
    for (int i = 0; i < device_count; ++i) {
        std::lock_guard<std::mutex> lock(shared_mutexes_[i]);
411
        if (shared_instances_[i] == nullptr) {
Li Zhang's avatar
Li Zhang committed
412
413
414
415
416
417
418
419
            need_nccl_params = true;
            break;
        }
    }
    if (need_nccl_params) {
        return AbstractTransformerModel::createNcclParams(node_id, device_id_start, multi_node);
    }
    else {
lvhan028's avatar
lvhan028 committed
420
        TM_LOG_INFO("Skipping NCCL param creation.");
Li Zhang's avatar
Li Zhang committed
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

        const int tensor_para_size   = getTensorParaSize();
        const int pipeline_para_size = getPipelineParaSize();
        const int local_comm_size    = multi_node ? device_count : tensor_para_size * pipeline_para_size;

        std::vector<ft::NcclParam> tensor_para_params(local_comm_size);
        std::vector<ft::NcclParam> pipeline_para_params(local_comm_size);
        return {std::move(tensor_para_params), std::move(pipeline_para_params)};
    }
}

template<typename T>
std::unique_ptr<ft::AbstractInstanceComm> LlamaTritonModel<T>::createInstanceComm(int size)
{
    return std::make_unique<ft::LlamaInstanceComm>(size);
}

template<typename T>
int LlamaTritonModel<T>::getTensorParaSize()
{
    return tensor_para_size_;
}

template<typename T>
int LlamaTritonModel<T>::getPipelineParaSize()
{
    return pipeline_para_size_;
}

template struct LlamaTritonModel<float>;
template struct LlamaTritonModel<half>;