LlamaTritonModel.cc 18.6 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/triton_backend/multi_gpu_gpt/ParallelGptTritonModel.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
#include "src/turbomind/triton_backend/llama/LlamaTritonModel.h"
Li Zhang's avatar
Li Zhang committed
22
#include "3rdparty/INIReader.h"
lvhan028's avatar
lvhan028 committed
23
24
25
26
#include "src/turbomind/models/llama/LlamaInstanceComm.h"
#include "src/turbomind/triton_backend/llama/LlamaTritonModelInstance.h"
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
#include "src/turbomind/utils/allocator.h"
Li Zhang's avatar
Li Zhang committed
27
28
#include <mutex>

lvhan028's avatar
lvhan028 committed
29
namespace ft = turbomind;
Li Zhang's avatar
Li Zhang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

std::shared_ptr<AbstractTransformerModel> AbstractTransformerModel::createLlamaModel(std::string inifile)
{
    INIReader reader = INIReader(inifile);
    if (reader.ParseError() < 0) {
        std::cout << "[ERROR] Can't load '" << inifile << "'\n";
        return nullptr;
    }

    const std::string data_type        = reader.Get("ft_instance_hyperparameter", "data_type");
    int               tensor_para_size = reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size");
    std::string       model_dir        = reader.Get("ft_instance_hyperparameter", "model_dir");

    if (data_type == "half" || data_type == "fp16") {
        return std::make_shared<LlamaTritonModel<half>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
    else {
        return std::make_shared<LlamaTritonModel<float>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
}

template<typename T>
void LlamaTritonModel<T>::handleMissingParams()
{
62
63
64
65
66
    if (kv_head_num_ == 0) {
        kv_head_num_ = head_num_;
        TM_LOG_WARNING("[LlamaTritonModel] `kv_head_num` is not set, default to `head_num` (%d).", (int)kv_head_num_);
    }

Li Zhang's avatar
Li Zhang committed
67
    if (!max_batch_size_) {
Li Zhang's avatar
Li Zhang committed
68
        max_batch_size_ = 64;
lvhan028's avatar
lvhan028 committed
69
        TM_LOG_WARNING("[LlamaTritonModel] `max_batch_size` is not set, default to %d.", (int)max_batch_size_);
Li Zhang's avatar
Li Zhang committed
70
71
72
73
    }

    if (!session_len_) {
        session_len_ = 2160;
lvhan028's avatar
lvhan028 committed
74
        TM_LOG_WARNING("[LlamaTritonModel] `session_len` is not set, default to %d.", (int)session_len_);
Li Zhang's avatar
Li Zhang committed
75
76
    }

Li Zhang's avatar
Li Zhang committed
77
78
79
80
81
82
    if (!attn_params_.max_position_embeddings) {
        attn_params_.max_position_embeddings = session_len_;
        TM_LOG_WARNING("[LlamaTritonModel] `max_position_embeddings` is not set, default to `session_len` (%d).",
                       (int)attn_params_.max_position_embeddings);
    }

Li Zhang's avatar
Li Zhang committed
83
84
    if (!max_context_token_num_) {
        max_context_token_num_ = (int)std::sqrt(max_batch_size_);
lvhan028's avatar
lvhan028 committed
85
        TM_LOG_WARNING("[LlamaTritonModel] `max_context_token_num` is not set, default to %d.",
Li Zhang's avatar
Li Zhang committed
86
87
88
89
90
                       (int)max_context_token_num_);
    }

    if (!step_length_) {
        step_length_ = 1;
lvhan028's avatar
lvhan028 committed
91
        TM_LOG_WARNING("[LlamaTritonModel] `step_length` is not set, default to %d.", (int)step_length_);
Li Zhang's avatar
Li Zhang committed
92
93
    }

Li Zhang's avatar
Li Zhang committed
94
95
96
97
98
99
100
101
    if (!cache_max_block_count_) {
        cache_max_block_count_ = .95f;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_max_entry_count` is not set, default to %f.", cache_max_block_count_);
    }

    if (!cache_block_seq_len_) {
        cache_block_seq_len_ = 128;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_block_seq_len` is not set, default to %d.", cache_block_seq_len_);
Li Zhang's avatar
Li Zhang committed
102
103
104
    }

    if (!cache_chunk_size_) {
Li Zhang's avatar
Li Zhang committed
105
        cache_chunk_size_ = cache_max_block_count_;
lvhan028's avatar
lvhan028 committed
106
        TM_LOG_WARNING("[LlamaTritonModel] `cache_chunk_size` is not set, default to %d.", (int)cache_chunk_size_);
Li Zhang's avatar
Li Zhang committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    }
}

template<typename T>
LlamaTritonModel<T>::LlamaTritonModel(size_t      tensor_para_size,
                                      size_t      pipeline_para_size,
                                      int         enable_custom_all_reduce,
                                      std::string model_dir):
    tensor_para_size_(tensor_para_size),
    pipeline_para_size_(pipeline_para_size),
    shared_weights_(std::vector<std::shared_ptr<ft::LlamaWeight<T>>>(ft::getDeviceCount())),
    enable_custom_all_reduce_(enable_custom_all_reduce)
{
    model_dir_ = model_dir;
    const std::string inifile{model_dir + "/config.ini"};
    INIReader         reader = INIReader(inifile);
    if (reader.ParseError() < 0) {
        std::cout << "[ERROR] Can't load '" << inifile << "'\n";
        ft::FT_CHECK(false);
    }

    model_name_            = reader.Get("llama", "model_name");
    head_num_              = reader.GetInteger("llama", "head_num");
130
    kv_head_num_           = reader.GetInteger("llama", "kv_head_num", 0);
Li Zhang's avatar
Li Zhang committed
131
132
133
134
135
136
137
138
139
140
141
    size_per_head_         = reader.GetInteger("llama", "size_per_head");
    inter_size_            = reader.GetInteger("llama", "inter_size");
    num_layer_             = reader.GetInteger("llama", "num_layer");
    vocab_size_            = reader.GetInteger("llama", "vocab_size");
    norm_eps_              = reader.GetFloat("llama", "norm_eps");
    start_id_              = reader.GetInteger("llama", "start_id");
    end_id_                = reader.GetInteger("llama", "end_id");
    max_batch_size_        = reader.GetInteger("llama", "max_batch_size", 0);
    max_context_token_num_ = reader.GetInteger("llama", "max_context_token_num", 0);
    session_len_           = reader.GetInteger("llama", "session_len", 0);
    step_length_           = reader.GetInteger("llama", "step_length", 0);
Li Zhang's avatar
Li Zhang committed
142
143
    cache_max_block_count_ = reader.GetFloat("llama", "cache_max_entry_count", 0);
    cache_block_seq_len_   = reader.GetInteger("llama", "cache_block_seq_len", 0);
Li Zhang's avatar
Li Zhang committed
144
    cache_chunk_size_      = reader.GetInteger("llama", "cache_chunk_size", 0);
Li Zhang's avatar
Li Zhang committed
145
146
147
148
149
    use_context_fmha_      = reader.GetInteger("llama", "use_context_fmha", 1);

    attn_bias_    = reader.GetInteger("llama", "attn_bias", 0);
    quant_policy_ = reader.GetInteger("llama", "quant_policy", 0);
    group_size_   = reader.GetInteger("llama", "group_size", 0);
Li Zhang's avatar
Li Zhang committed
150

Li Zhang's avatar
Li Zhang committed
151
152
    // rotary embedding parameters
    attn_params_.rotary_embedding_dim    = reader.GetInteger("llama", "rotary_embedding");
Lyu Han's avatar
Lyu Han committed
153
    attn_params_.rotary_embedding_base   = reader.GetFloat("llama", "rope_theta", 10000.0f);
Li Zhang's avatar
Li Zhang committed
154
    attn_params_.rope_scaling_factor     = reader.GetFloat("llama", "rope_scaling_factor", 0.f);
155
    attn_params_.max_position_embeddings = reader.GetInteger("llama", "max_position_embeddings", 0);
Li Zhang's avatar
Li Zhang committed
156
    // attn_params_.use_dynamic_ntk         = reader.GetInteger("llama", "use_dynamic_ntk", 0);
157
158
    attn_params_.use_logn_attn           = reader.GetInteger("llama", "use_logn_attn", 0);

Li Zhang's avatar
Li Zhang committed
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    handleMissingParams();

    if (max_context_token_num_ <= max_batch_size_) {
        max_context_token_num_ *= session_len_;
    }

    shared_state_          = std::make_shared<typename ft::LlamaV2<T>::SharedState>();
    shared_state_->barrier = std::make_shared<ft::Barrier>(tensor_para_size);

    const auto device_count = ft::getDeviceCount();
    shared_instances_.resize(device_count);
    shared_mutexes_.resize(device_count);

    const std::string weight_type_str = reader.Get("llama", "weight_type");
    if (weight_type_str == "fp16") {
        weight_type_ = ft::WeightType::kFP16;
    }
    else if (weight_type_str == "fp32") {
        weight_type_ = ft::WeightType::kFP32;
    }
    else if (weight_type_str == "int8") {
        weight_type_ = ft::WeightType::kINT8;
    }
    else if (weight_type_str == "int4") {
        weight_type_ = ft::WeightType::kINT4;
    }
    else {
        std::cout << "[ERROR] Unsupported weight type: '" << weight_type_str << "'\n";
        ft::FT_CHECK(0);
    }
}

template<typename T>
std::unique_ptr<LlamaTritonSharedModelInstance<T>> LlamaTritonModel<T>::createSharedModelInstance(
    int                                                               device_id,
    int                                                               rank,
    std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
    std::shared_ptr<ft::AbstractCustomComm>                           custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    /// TODO: this stream handle is leaked
    cudaStream_t stream{};
    ft::check_cuda_error(cudaStreamCreate(&stream));

    allocator->setStream(stream);

    cublasHandle_t   cublas_handle;
    cublasLtHandle_t cublaslt_handle;

    cublasCreate(&cublas_handle);
    cublasLtCreate(&cublaslt_handle);
    cublasSetStream(cublas_handle, stream);

    std::unique_ptr<ft::cublasAlgoMap>   cublas_algo_map(new ft::cublasAlgoMap("gemm_config.in"));
    std::unique_ptr<std::mutex>          cublas_wrapper_mutex(new std::mutex());
    std::unique_ptr<ft::cublasMMWrapper> cublas_wrapper(new ft::cublasMMWrapper(
        cublas_handle, cublaslt_handle, stream, cublas_algo_map.get(), cublas_wrapper_mutex.get(), allocator.get()));

    std::unique_ptr<cudaDeviceProp> cuda_device_prop_ptr(new cudaDeviceProp);
    ft::check_cuda_error(cudaGetDeviceProperties(cuda_device_prop_ptr.get(), device_id));

    if (std::is_same<T, half>::value) {
        cublas_wrapper->setGemmConfig(CUDA_R_16F, CUDA_R_16F, CUDA_R_16F, CUDA_R_32F);
    }
    else if (std::is_same<T, float>::value) {
        cublas_wrapper->setFP32GemmConfig();
    }

    ft::NcclParam tensor_para   = nccl_params.first[comms_rank];
    ft::NcclParam pipeline_para = nccl_params.second[comms_rank];

    ft::FT_CHECK(tensor_para.world_size_ == tensor_para_size_);
Li Zhang's avatar
Li Zhang committed
236
    ft::FT_CHECK(pipeline_para.world_size_ == pipeline_para_size_);
Li Zhang's avatar
Li Zhang committed
237
238

    auto llama = std::make_unique<ft::LlamaV2<T>>(head_num_,
239
                                                  kv_head_num_,
Li Zhang's avatar
Li Zhang committed
240
241
242
243
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
                                                  vocab_size_,
244
                                                  attn_params_,
Li Zhang's avatar
Li Zhang committed
245
246
247
248
249
250
251
                                                  norm_eps_,
                                                  max_batch_size_,
                                                  max_context_token_num_,
                                                  session_len_,
                                                  step_length_,
                                                  start_id_,
                                                  end_id_,
Li Zhang's avatar
Li Zhang committed
252
253
                                                  cache_max_block_count_,
                                                  cache_block_seq_len_,
Li Zhang's avatar
Li Zhang committed
254
                                                  cache_chunk_size_,
255
                                                  quant_policy_,
Li Zhang's avatar
Li Zhang committed
256
257
258
259
260
261
262
263
264
265
266
                                                  use_context_fmha_,
                                                  shared_state_,
                                                  shared_weights_[device_id].get(),
                                                  tensor_para,
                                                  stream,
                                                  cublas_wrapper.get(),
                                                  allocator.get(),
                                                  false,  // is_free_buffer_after_forward,
                                                  cuda_device_prop_ptr.get());

    return std::make_unique<LlamaTritonSharedModelInstance<T>>(
Lyu Han's avatar
Lyu Han committed
267
        LlamaTritonSharedModelInstance<T>{std::move(allocator),
Li Zhang's avatar
Li Zhang committed
268
269
270
271
                                          std::move(cublas_algo_map),
                                          std::move(cublas_wrapper_mutex),
                                          std::move(cublas_wrapper),
                                          std::move(cuda_device_prop_ptr),
Lyu Han's avatar
Lyu Han committed
272
273
                                          shared_weights_[device_id],
                                          std::move(llama),
Li Zhang's avatar
Li Zhang committed
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
                                          session_len_});
}

template<typename T>
std::unique_ptr<AbstractTransformerModelInstance>
LlamaTritonModel<T>::createModelInstance(int                                                               device_id,
                                         int                                                               rank,
                                         cudaStream_t                                                      stream,
                                         std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
                                         std::shared_ptr<ft::AbstractCustomComm> custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    // const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::shared_ptr<LlamaTritonSharedModelInstance<T>> instance;
    {
        std::lock_guard<std::mutex> lock(shared_mutexes_[device_id]);
291
        instance = shared_instances_[device_id];
Li Zhang's avatar
Li Zhang committed
292
293
        if (!instance) {
            instance = createSharedModelInstance(device_id, rank, nccl_params, custom_all_reduce_comm);
Chen Xin's avatar
Chen Xin committed
294
            instance->llm->setFfiLock(ffi_lock_);
Li Zhang's avatar
Li Zhang committed
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
            shared_instances_[device_id] = instance;
        }
    }

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    allocator->setStream(stream);

    return std::make_unique<LlamaTritonModelInstance<T>>(instance, std::move(allocator));
}

template<typename T>
void LlamaTritonModel<T>::createSharedWeights(int device_id, int rank)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int tensor_para_rank   = rank % tensor_para_size_;
    const int pipeline_para_rank = rank / tensor_para_size_;
    ft::FT_CHECK(pipeline_para_size_ == 1 && pipeline_para_rank == 0);
314
315
316
    shared_weights_[device_id] = std::make_shared<ft::LlamaWeight<T>>(head_num_,
                                                                      kv_head_num_,
                                                                      size_per_head_,
Li Zhang's avatar
Li Zhang committed
317
318
319
                                                                      inter_size_,
                                                                      vocab_size_,
                                                                      num_layer_,
Li Zhang's avatar
Li Zhang committed
320
                                                                      attn_bias_,
321
322
                                                                      weight_type_,
                                                                      group_size_,
Li Zhang's avatar
Li Zhang committed
323
                                                                      tensor_para_size_,
324
                                                                      tensor_para_rank);
Li Zhang's avatar
Li Zhang committed
325
326
327
328
329
330
331
332
333
    shared_weights_[device_id]->loadModel(model_dir_);
    return;
}

template<typename T>
std::string LlamaTritonModel<T>::toString()
{
    std::stringstream ss;
    ss << "Model: "
334
335
336
337
       << "\nhead_num: " << head_num_ << "\nkv_head_num: " << kv_head_num_ << "\nsize_per_head: " << size_per_head_
       << "\ninter_size: " << inter_size_ << "\nnum_layer: " << num_layer_ << "\nvocab_size: " << vocab_size_
       << "\nattn_bias: " << attn_bias_ << "\nmax_batch_size: " << max_batch_size_
       << "\nmax_context_token_num: " << max_context_token_num_ << "\nsession_len: " << session_len_
Li Zhang's avatar
Li Zhang committed
338
339
340
341
342
343
344
       << "\nstep_length: " << step_length_ << "\ncache_max_entry_count: " << cache_max_block_count_
       << "\ncache_block_seq_len: " << cache_block_seq_len_ << "\ncache_chunk_size: " << cache_chunk_size_
       << "\nuse_context_fmha: " << use_context_fmha_ << "\nstart_id: " << start_id_
       << "\ntensor_para_size: " << tensor_para_size_ << "\npipeline_para_size: " << pipeline_para_size_
       << "\nenable_custom_all_reduce: " << enable_custom_all_reduce_ << "\nmodel_name: " << model_name_
       << "\nmodel_dir: " << model_dir_ << "\nquant_policy: " << quant_policy_ << "\ngroup_size: " << group_size_
       << std::endl;
Li Zhang's avatar
Li Zhang committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365

    return ss.str();
}

template<typename T>
void LlamaTritonModel<T>::createCustomComms(
    std::vector<std::shared_ptr<ft::AbstractCustomComm>>* custom_all_reduce_comms, int world_size)
{
    using commDataType = typename ft::CustomARCommTypeConverter<T>::Type;
    ft::initCustomAllReduceComm<commDataType>(custom_all_reduce_comms, enable_custom_all_reduce_, world_size);
}

template<typename T>
std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>>
LlamaTritonModel<T>::createNcclParams(const int node_id, const int device_id_start, const bool multi_node)
{
    const auto device_count     = ft::getDeviceCount();
    bool       need_nccl_params = false;
    // create nccl group when there are non-occupied devices
    for (int i = 0; i < device_count; ++i) {
        std::lock_guard<std::mutex> lock(shared_mutexes_[i]);
366
        if (shared_instances_[i] == nullptr) {
Li Zhang's avatar
Li Zhang committed
367
368
369
370
371
372
373
374
            need_nccl_params = true;
            break;
        }
    }
    if (need_nccl_params) {
        return AbstractTransformerModel::createNcclParams(node_id, device_id_start, multi_node);
    }
    else {
lvhan028's avatar
lvhan028 committed
375
        TM_LOG_INFO("Skipping NCCL param creation.");
Li Zhang's avatar
Li Zhang committed
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

        const int tensor_para_size   = getTensorParaSize();
        const int pipeline_para_size = getPipelineParaSize();
        const int local_comm_size    = multi_node ? device_count : tensor_para_size * pipeline_para_size;

        std::vector<ft::NcclParam> tensor_para_params(local_comm_size);
        std::vector<ft::NcclParam> pipeline_para_params(local_comm_size);
        return {std::move(tensor_para_params), std::move(pipeline_para_params)};
    }
}

template<typename T>
std::unique_ptr<ft::AbstractInstanceComm> LlamaTritonModel<T>::createInstanceComm(int size)
{
    return std::make_unique<ft::LlamaInstanceComm>(size);
}

template<typename T>
int LlamaTritonModel<T>::getTensorParaSize()
{
    return tensor_para_size_;
}

template<typename T>
int LlamaTritonModel<T>::getPipelineParaSize()
{
    return pipeline_para_size_;
}

template struct LlamaTritonModel<float>;
template struct LlamaTritonModel<half>;