LlamaTritonModel.cc 21.4 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/triton_backend/multi_gpu_gpt/ParallelGptTritonModel.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
#include "src/turbomind/triton_backend/llama/LlamaTritonModel.h"
Li Zhang's avatar
Li Zhang committed
22
#include "3rdparty/INIReader.h"
lvhan028's avatar
lvhan028 committed
23
24
25
26
#include "src/turbomind/models/llama/LlamaInstanceComm.h"
#include "src/turbomind/triton_backend/llama/LlamaTritonModelInstance.h"
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
#include "src/turbomind/utils/allocator.h"
Li Zhang's avatar
Li Zhang committed
27
28
#include <mutex>

lvhan028's avatar
lvhan028 committed
29
namespace ft = turbomind;
Li Zhang's avatar
Li Zhang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

std::shared_ptr<AbstractTransformerModel> AbstractTransformerModel::createLlamaModel(std::string inifile)
{
    INIReader reader = INIReader(inifile);
    if (reader.ParseError() < 0) {
        std::cout << "[ERROR] Can't load '" << inifile << "'\n";
        return nullptr;
    }

    const std::string data_type        = reader.Get("ft_instance_hyperparameter", "data_type");
    int               tensor_para_size = reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size");
    std::string       model_dir        = reader.Get("ft_instance_hyperparameter", "model_dir");

    if (data_type == "half" || data_type == "fp16") {
        return std::make_shared<LlamaTritonModel<half>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
q.yao's avatar
q.yao committed
50
51
52
53
54
55
56
57
58
59
60
61
    else if (data_type == "bf16") {
#ifdef ENABLE_BF16
        return std::make_shared<LlamaTritonModel<__nv_bfloat16>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
#else
        TM_LOG_ERROR("[ERROR] Turbomind is not built with ENABLE_BF16");
        ft::FT_CHECK(false);
#endif
    }
Li Zhang's avatar
Li Zhang committed
62
63
64
65
66
67
68
69
70
71
72
73
    else {
        return std::make_shared<LlamaTritonModel<float>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
}

template<typename T>
void LlamaTritonModel<T>::handleMissingParams()
{
74
75
76
77
78
    if (kv_head_num_ == 0) {
        kv_head_num_ = head_num_;
        TM_LOG_WARNING("[LlamaTritonModel] `kv_head_num` is not set, default to `head_num` (%d).", (int)kv_head_num_);
    }

79
80
81
82
    if (!attn_params_.max_position_embeddings) {
        attn_params_.max_position_embeddings = 2048;
        TM_LOG_WARNING("[LlamaTritonModel] `max_position_embeddings` is not set, default to %d.",
                       (int)attn_params_.max_position_embeddings);
Li Zhang's avatar
Li Zhang committed
83
84
    }

85
86
87
88
    if (!engine_params_.max_batch_size) {
        engine_params_.max_batch_size = 64;
        TM_LOG_WARNING("[LlamaTritonModel] `max_batch_size` is not set, default to %d.",
                       (int)engine_params_.max_batch_size);
Li Zhang's avatar
Li Zhang committed
89
90
    }

91
92
93
    if (!engine_params_.session_len) {
        engine_params_.session_len = attn_params_.max_position_embeddings;
        TM_LOG_WARNING("[LlamaTritonModel] `session_len` is not set, default to %d.", (int)engine_params_.session_len);
Li Zhang's avatar
Li Zhang committed
94
95
    }

96
97
    if (!engine_params_.max_context_token_num) {
        engine_params_.max_context_token_num = engine_params_.session_len;
lvhan028's avatar
lvhan028 committed
98
        TM_LOG_WARNING("[LlamaTritonModel] `max_context_token_num` is not set, default to %d.",
99
                       (int)engine_params_.max_context_token_num);
Li Zhang's avatar
Li Zhang committed
100
101
    }

102
103
104
    if (engine_params_.max_context_token_num <= engine_params_.max_batch_size) {
        engine_params_.max_context_token_num *= engine_params_.session_len;
        TM_LOG_WARNING("[LlamaTritonModel] `max_context_token_num` = %d.", (int)engine_params_.max_context_token_num);
Li Zhang's avatar
Li Zhang committed
105
106
    }

107
108
109
110
111
112
113
114
    if (!engine_params_.step_length) {
        engine_params_.step_length = 1;
    }

    if (!engine_params_.cache_max_block_count) {
        engine_params_.cache_max_block_count = .95f;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_max_entry_count` is not set, default to %f.",
                       engine_params_.cache_max_block_count);
Li Zhang's avatar
Li Zhang committed
115
116
117
118
119
    }

    if (!cache_block_seq_len_) {
        cache_block_seq_len_ = 128;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_block_seq_len` is not set, default to %d.", cache_block_seq_len_);
Li Zhang's avatar
Li Zhang committed
120
121
    }

122
123
124
125
126
127
128
129
130
131
    if (!engine_params_.cache_chunk_size) {
        engine_params_.cache_chunk_size = engine_params_.cache_max_block_count;
        TM_LOG_WARNING("[LlamaTritonModel] `cache_chunk_size` is not set, default to %d.",
                       (int)engine_params_.cache_chunk_size);
    }

    if (!engine_params_.num_tokens_per_iter) {
        engine_params_.num_tokens_per_iter = engine_params_.max_context_token_num;
        TM_LOG_WARNING("[LlamaTritonModel] `num_tokens_per_iter` is not set, default to `max_context_token_num` (%d).",
                       (int)engine_params_.num_tokens_per_iter);
Li Zhang's avatar
Li Zhang committed
132
133
134
135
136
137
138
    }
}

template<typename T>
LlamaTritonModel<T>::LlamaTritonModel(size_t      tensor_para_size,
                                      size_t      pipeline_para_size,
                                      int         enable_custom_all_reduce,
139
140
                                      std::string model_dir,
                                      std::string config):
Li Zhang's avatar
Li Zhang committed
141
142
143
144
145
    tensor_para_size_(tensor_para_size),
    pipeline_para_size_(pipeline_para_size),
    shared_weights_(std::vector<std::shared_ptr<ft::LlamaWeight<T>>>(ft::getDeviceCount())),
    enable_custom_all_reduce_(enable_custom_all_reduce)
{
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    INIReader reader;
    FT_CHECK_WITH_INFO((config.empty() ^ model_dir.empty()), "invalid init options");

    if (!config.empty()) {
        std::FILE* tmpf = std::tmpfile();
        std::fputs(config.c_str(), tmpf);
        std::rewind(tmpf);
        reader = INIReader(tmpf);
        if (reader.ParseError() < 0) {
            TM_LOG_ERROR("[ERROR] Can't init with config %s", config.c_str());
            ft::FT_CHECK(false);
        }
    }

    if (!model_dir.empty()) {
        model_dir_ = model_dir;
        const std::string inifile{model_dir + "/config.ini"};
        reader = INIReader(inifile);
        if (reader.ParseError() < 0) {
            TM_LOG_ERROR("[ERROR] Can't load %s", inifile.c_str());
            ft::FT_CHECK(false);
        }
Li Zhang's avatar
Li Zhang committed
168
169
    }

170
171
172
173
174
175
176
177
178
179
180
181
    model_name_          = reader.Get("llama", "model_name");
    head_num_            = reader.GetInteger("llama", "head_num");
    kv_head_num_         = reader.GetInteger("llama", "kv_head_num", 0);
    size_per_head_       = reader.GetInteger("llama", "size_per_head");
    inter_size_          = reader.GetInteger("llama", "inter_size");
    num_layer_           = reader.GetInteger("llama", "num_layer");
    vocab_size_          = reader.GetInteger("llama", "vocab_size");
    norm_eps_            = reader.GetFloat("llama", "norm_eps");
    start_id_            = reader.GetInteger("llama", "start_id");
    end_id_              = reader.GetInteger("llama", "end_id");
    use_context_fmha_    = reader.GetInteger("llama", "use_context_fmha", 1);
    cache_block_seq_len_ = reader.GetInteger("llama", "cache_block_seq_len", 0);
Li Zhang's avatar
Li Zhang committed
182
183
184
185

    attn_bias_    = reader.GetInteger("llama", "attn_bias", 0);
    quant_policy_ = reader.GetInteger("llama", "quant_policy", 0);
    group_size_   = reader.GetInteger("llama", "group_size", 0);
Li Zhang's avatar
Li Zhang committed
186

Li Zhang's avatar
Li Zhang committed
187
188
    // rotary embedding parameters
    attn_params_.rotary_embedding_dim    = reader.GetInteger("llama", "rotary_embedding");
Lyu Han's avatar
Lyu Han committed
189
    attn_params_.rotary_embedding_base   = reader.GetFloat("llama", "rope_theta", 10000.0f);
Li Zhang's avatar
Li Zhang committed
190
    attn_params_.rope_scaling_factor     = reader.GetFloat("llama", "rope_scaling_factor", 0.f);
191
    attn_params_.max_position_embeddings = reader.GetInteger("llama", "max_position_embeddings", 0);
Li Zhang's avatar
Li Zhang committed
192
    // attn_params_.use_dynamic_ntk         = reader.GetInteger("llama", "use_dynamic_ntk", 0);
193
    attn_params_.use_logn_attn = reader.GetInteger("llama", "use_logn_attn", 0);
194

195
196
197
198
    engine_params_.max_batch_size        = reader.GetInteger("llama", "max_batch_size", 0);
    engine_params_.max_context_token_num = reader.GetInteger("llama", "max_context_token_num", 0);
    engine_params_.session_len           = reader.GetInteger("llama", "session_len", 0);
    engine_params_.step_length           = reader.GetInteger("llama", "step_length", 0);
Li Zhang's avatar
Li Zhang committed
199

200
201
202
203
204
205
206
207
    engine_params_.cache_max_block_count = reader.GetFloat("llama", "cache_max_entry_count", 0);
    engine_params_.cache_chunk_size      = reader.GetInteger("llama", "cache_chunk_size", 0);

    engine_params_.num_tokens_per_iter   = reader.GetInteger("llama", "num_tokens_per_iter", 0);
    engine_params_.extra_tokens_per_iter = reader.GetInteger("llama", "extra_tokens_per_iter", 0);
    engine_params_.max_prefill_iters     = reader.GetInteger("llama", "max_prefill_iters", 1);

    handleMissingParams();
Li Zhang's avatar
Li Zhang committed
208
209
210
211
212
213
214
215
216
217
218
219

    shared_state_          = std::make_shared<typename ft::LlamaV2<T>::SharedState>();
    shared_state_->barrier = std::make_shared<ft::Barrier>(tensor_para_size);

    const auto device_count = ft::getDeviceCount();
    shared_instances_.resize(device_count);
    shared_mutexes_.resize(device_count);

    const std::string weight_type_str = reader.Get("llama", "weight_type");
    if (weight_type_str == "fp16") {
        weight_type_ = ft::WeightType::kFP16;
    }
q.yao's avatar
q.yao committed
220
221
222
    else if (weight_type_str == "bf16") {
        weight_type_ = ft::WeightType::kBF16;
    }
Li Zhang's avatar
Li Zhang committed
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
    else if (weight_type_str == "fp32") {
        weight_type_ = ft::WeightType::kFP32;
    }
    else if (weight_type_str == "int8") {
        weight_type_ = ft::WeightType::kINT8;
    }
    else if (weight_type_str == "int4") {
        weight_type_ = ft::WeightType::kINT4;
    }
    else {
        std::cout << "[ERROR] Unsupported weight type: '" << weight_type_str << "'\n";
        ft::FT_CHECK(0);
    }
}

template<typename T>
std::unique_ptr<LlamaTritonSharedModelInstance<T>> LlamaTritonModel<T>::createSharedModelInstance(
    int                                                               device_id,
    int                                                               rank,
    std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
    std::shared_ptr<ft::AbstractCustomComm>                           custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    /// TODO: this stream handle is leaked
    cudaStream_t stream{};
    ft::check_cuda_error(cudaStreamCreate(&stream));

    allocator->setStream(stream);

    cublasHandle_t   cublas_handle;
    cublasLtHandle_t cublaslt_handle;

    cublasCreate(&cublas_handle);
xiabo's avatar
xiabo committed
261
    // cublasLtCreate(&cublaslt_handle);
Li Zhang's avatar
Li Zhang committed
262
263
264
265
266
267
268
269
270
271
272
    cublasSetStream(cublas_handle, stream);

    std::unique_ptr<ft::cublasAlgoMap>   cublas_algo_map(new ft::cublasAlgoMap("gemm_config.in"));
    std::unique_ptr<std::mutex>          cublas_wrapper_mutex(new std::mutex());
    std::unique_ptr<ft::cublasMMWrapper> cublas_wrapper(new ft::cublasMMWrapper(
        cublas_handle, cublaslt_handle, stream, cublas_algo_map.get(), cublas_wrapper_mutex.get(), allocator.get()));

    std::unique_ptr<cudaDeviceProp> cuda_device_prop_ptr(new cudaDeviceProp);
    ft::check_cuda_error(cudaGetDeviceProperties(cuda_device_prop_ptr.get(), device_id));

    if (std::is_same<T, half>::value) {
xiabo's avatar
xiabo committed
273
274
        // cublas_wrapper->setGemmConfig(CUDA_R_16F, CUDA_R_16F, CUDA_R_16F, CUDA_R_32F);
        cublas_wrapper->setGemmConfig(CUDA_R_16F, CUDA_R_16F, CUDA_R_16F, CUDA_R_16F);
Li Zhang's avatar
Li Zhang committed
275
276
277
278
    }
    else if (std::is_same<T, float>::value) {
        cublas_wrapper->setFP32GemmConfig();
    }
q.yao's avatar
q.yao committed
279
280
281
282
283
#ifdef ENABLE_BF16
    else if (std::is_same<T, __nv_bfloat16>::value) {
        cublas_wrapper->setBF16GemmConfig();
    }
#endif
Li Zhang's avatar
Li Zhang committed
284
285
286
287
288

    ft::NcclParam tensor_para   = nccl_params.first[comms_rank];
    ft::NcclParam pipeline_para = nccl_params.second[comms_rank];

    ft::FT_CHECK(tensor_para.world_size_ == tensor_para_size_);
Li Zhang's avatar
Li Zhang committed
289
    ft::FT_CHECK(pipeline_para.world_size_ == pipeline_para_size_);
Li Zhang's avatar
Li Zhang committed
290
291

    auto llama = std::make_unique<ft::LlamaV2<T>>(head_num_,
292
                                                  kv_head_num_,
Li Zhang's avatar
Li Zhang committed
293
294
295
296
297
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
                                                  vocab_size_,
                                                  norm_eps_,
298
                                                  attn_params_,
Li Zhang's avatar
Li Zhang committed
299
300
                                                  start_id_,
                                                  end_id_,
Li Zhang's avatar
Li Zhang committed
301
                                                  cache_block_seq_len_,
302
                                                  quant_policy_,
Li Zhang's avatar
Li Zhang committed
303
                                                  use_context_fmha_,
304
                                                  engine_params_,
Li Zhang's avatar
Li Zhang committed
305
306
307
308
309
310
311
312
313
314
                                                  shared_state_,
                                                  shared_weights_[device_id].get(),
                                                  tensor_para,
                                                  stream,
                                                  cublas_wrapper.get(),
                                                  allocator.get(),
                                                  false,  // is_free_buffer_after_forward,
                                                  cuda_device_prop_ptr.get());

    return std::make_unique<LlamaTritonSharedModelInstance<T>>(
Lyu Han's avatar
Lyu Han committed
315
        LlamaTritonSharedModelInstance<T>{std::move(allocator),
Li Zhang's avatar
Li Zhang committed
316
317
318
319
                                          std::move(cublas_algo_map),
                                          std::move(cublas_wrapper_mutex),
                                          std::move(cublas_wrapper),
                                          std::move(cuda_device_prop_ptr),
Lyu Han's avatar
Lyu Han committed
320
321
                                          shared_weights_[device_id],
                                          std::move(llama),
322
                                          engine_params_.session_len});
Li Zhang's avatar
Li Zhang committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
}

template<typename T>
std::unique_ptr<AbstractTransformerModelInstance>
LlamaTritonModel<T>::createModelInstance(int                                                               device_id,
                                         int                                                               rank,
                                         cudaStream_t                                                      stream,
                                         std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
                                         std::shared_ptr<ft::AbstractCustomComm> custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    // const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::shared_ptr<LlamaTritonSharedModelInstance<T>> instance;
    {
        std::lock_guard<std::mutex> lock(shared_mutexes_[device_id]);
339
        instance = shared_instances_[device_id];
Li Zhang's avatar
Li Zhang committed
340
341
        if (!instance) {
            instance = createSharedModelInstance(device_id, rank, nccl_params, custom_all_reduce_comm);
Chen Xin's avatar
Chen Xin committed
342
            instance->llm->setFfiLock(ffi_lock_);
Li Zhang's avatar
Li Zhang committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
            shared_instances_[device_id] = instance;
        }
    }

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    allocator->setStream(stream);

    return std::make_unique<LlamaTritonModelInstance<T>>(instance, std::move(allocator));
}

template<typename T>
void LlamaTritonModel<T>::createSharedWeights(int device_id, int rank)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int tensor_para_rank   = rank % tensor_para_size_;
    const int pipeline_para_rank = rank / tensor_para_size_;
    ft::FT_CHECK(pipeline_para_size_ == 1 && pipeline_para_rank == 0);
362
363
364
    shared_weights_[device_id] = std::make_shared<ft::LlamaWeight<T>>(head_num_,
                                                                      kv_head_num_,
                                                                      size_per_head_,
Li Zhang's avatar
Li Zhang committed
365
366
367
                                                                      inter_size_,
                                                                      vocab_size_,
                                                                      num_layer_,
Li Zhang's avatar
Li Zhang committed
368
                                                                      attn_bias_,
369
370
                                                                      weight_type_,
                                                                      group_size_,
Li Zhang's avatar
Li Zhang committed
371
                                                                      tensor_para_size_,
372
                                                                      tensor_para_rank);
373
374
375
376
    // model inited with model_dir
    if (model_dir_ != "") {
        shared_weights_[device_id]->loadModel(model_dir_);
    }
Li Zhang's avatar
Li Zhang committed
377
378
379
    return;
}

380
381
382
383
384
385
386
387
388
389
390
391
392
393
template<typename T>
TensorMap LlamaTritonModel<T>::getParams(int deviceId, int rank)
{
    ft::check_cuda_error(cudaSetDevice(deviceId));
    // shared_weight should be created before getParams
    ft::FT_CHECK(shared_weights_[deviceId] != nullptr);
    ft::TensorMap output = shared_weights_[deviceId]->getParams();
    TensorMap     result;
    for (auto [name, tensor] : output) {
        result.emplace(name, triton::Tensor{tensor.where, tensor.type, tensor.shape, tensor.data});
    }
    return result;
}

Li Zhang's avatar
Li Zhang committed
394
395
396
397
398
template<typename T>
std::string LlamaTritonModel<T>::toString()
{
    std::stringstream ss;
    ss << "Model: "
399
400
       << "\nhead_num: " << head_num_ << "\nkv_head_num: " << kv_head_num_ << "\nsize_per_head: " << size_per_head_
       << "\ninter_size: " << inter_size_ << "\nnum_layer: " << num_layer_ << "\nvocab_size: " << vocab_size_
401
402
403
404
405
       << "\nattn_bias: " << attn_bias_ << "\nmax_batch_size: " << engine_params_.max_batch_size
       << "\nmax_context_token_num: " << engine_params_.max_context_token_num
       << "\nsession_len: " << engine_params_.session_len << "\nstep_length: " << engine_params_.step_length
       << "\ncache_max_entry_count: " << engine_params_.cache_max_block_count
       << "\ncache_block_seq_len: " << cache_block_seq_len_ << "\ncache_chunk_size: " << engine_params_.cache_chunk_size
Li Zhang's avatar
Li Zhang committed
406
407
408
409
410
       << "\nuse_context_fmha: " << use_context_fmha_ << "\nstart_id: " << start_id_
       << "\ntensor_para_size: " << tensor_para_size_ << "\npipeline_para_size: " << pipeline_para_size_
       << "\nenable_custom_all_reduce: " << enable_custom_all_reduce_ << "\nmodel_name: " << model_name_
       << "\nmodel_dir: " << model_dir_ << "\nquant_policy: " << quant_policy_ << "\ngroup_size: " << group_size_
       << std::endl;
Li Zhang's avatar
Li Zhang committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

    return ss.str();
}

template<typename T>
void LlamaTritonModel<T>::createCustomComms(
    std::vector<std::shared_ptr<ft::AbstractCustomComm>>* custom_all_reduce_comms, int world_size)
{
    using commDataType = typename ft::CustomARCommTypeConverter<T>::Type;
    ft::initCustomAllReduceComm<commDataType>(custom_all_reduce_comms, enable_custom_all_reduce_, world_size);
}

template<typename T>
std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>>
LlamaTritonModel<T>::createNcclParams(const int node_id, const int device_id_start, const bool multi_node)
{
    const auto device_count     = ft::getDeviceCount();
    bool       need_nccl_params = false;
    // create nccl group when there are non-occupied devices
    for (int i = 0; i < device_count; ++i) {
        std::lock_guard<std::mutex> lock(shared_mutexes_[i]);
432
        if (shared_instances_[i] == nullptr) {
Li Zhang's avatar
Li Zhang committed
433
434
435
436
437
438
439
440
            need_nccl_params = true;
            break;
        }
    }
    if (need_nccl_params) {
        return AbstractTransformerModel::createNcclParams(node_id, device_id_start, multi_node);
    }
    else {
lvhan028's avatar
lvhan028 committed
441
        TM_LOG_INFO("Skipping NCCL param creation.");
Li Zhang's avatar
Li Zhang committed
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472

        const int tensor_para_size   = getTensorParaSize();
        const int pipeline_para_size = getPipelineParaSize();
        const int local_comm_size    = multi_node ? device_count : tensor_para_size * pipeline_para_size;

        std::vector<ft::NcclParam> tensor_para_params(local_comm_size);
        std::vector<ft::NcclParam> pipeline_para_params(local_comm_size);
        return {std::move(tensor_para_params), std::move(pipeline_para_params)};
    }
}

template<typename T>
std::unique_ptr<ft::AbstractInstanceComm> LlamaTritonModel<T>::createInstanceComm(int size)
{
    return std::make_unique<ft::LlamaInstanceComm>(size);
}

template<typename T>
int LlamaTritonModel<T>::getTensorParaSize()
{
    return tensor_para_size_;
}

template<typename T>
int LlamaTritonModel<T>::getPipelineParaSize()
{
    return pipeline_para_size_;
}

template struct LlamaTritonModel<float>;
template struct LlamaTritonModel<half>;
q.yao's avatar
q.yao committed
473
474
475
#ifdef ENABLE_BF16
template struct LlamaTritonModel<__nv_bfloat16>;
#endif