LlamaTritonModel.cc 17.9 KB
Newer Older
Li Zhang's avatar
Li Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/*
 * Copyright (c) OpenMMLab. All rights reserved.
 * Copyright (c) 2020-2023, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

Li Zhang's avatar
Li Zhang committed
18
// Modified from
lvhan028's avatar
lvhan028 committed
19
// https://github.com/NVIDIA/FasterTransformer/blob/main/src/turbomind/triton_backend/multi_gpu_gpt/ParallelGptTritonModel.cc
Li Zhang's avatar
Li Zhang committed
20

lvhan028's avatar
lvhan028 committed
21
#include "src/turbomind/triton_backend/llama/LlamaTritonModel.h"
Li Zhang's avatar
Li Zhang committed
22
#include "3rdparty/INIReader.h"
lvhan028's avatar
lvhan028 committed
23
24
25
26
#include "src/turbomind/models/llama/LlamaInstanceComm.h"
#include "src/turbomind/triton_backend/llama/LlamaTritonModelInstance.h"
#include "src/turbomind/triton_backend/transformer_triton_backend.hpp"
#include "src/turbomind/utils/allocator.h"
Li Zhang's avatar
Li Zhang committed
27
28
#include <mutex>

lvhan028's avatar
lvhan028 committed
29
namespace ft = turbomind;
Li Zhang's avatar
Li Zhang committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

std::shared_ptr<AbstractTransformerModel> AbstractTransformerModel::createLlamaModel(std::string inifile)
{
    INIReader reader = INIReader(inifile);
    if (reader.ParseError() < 0) {
        std::cout << "[ERROR] Can't load '" << inifile << "'\n";
        return nullptr;
    }

    const std::string data_type        = reader.Get("ft_instance_hyperparameter", "data_type");
    int               tensor_para_size = reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size");
    std::string       model_dir        = reader.Get("ft_instance_hyperparameter", "model_dir");

    if (data_type == "half" || data_type == "fp16") {
        return std::make_shared<LlamaTritonModel<half>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
    else {
        return std::make_shared<LlamaTritonModel<float>>(
            reader.GetInteger("ft_instance_hyperparameter", "tensor_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "pipeline_para_size"),
            reader.GetInteger("ft_instance_hyperparameter", "enable_custom_all_reduce", 0),
            model_dir);
    }
}

template<typename T>
void LlamaTritonModel<T>::handleMissingParams()
{
62
63
64
65
66
    if (kv_head_num_ == 0) {
        kv_head_num_ = head_num_;
        TM_LOG_WARNING("[LlamaTritonModel] `kv_head_num` is not set, default to `head_num` (%d).", (int)kv_head_num_);
    }

Li Zhang's avatar
Li Zhang committed
67
68
    if (!max_batch_size_) {
        max_batch_size_ = 32;
lvhan028's avatar
lvhan028 committed
69
        TM_LOG_WARNING("[LlamaTritonModel] `max_batch_size` is not set, default to %d.", (int)max_batch_size_);
Li Zhang's avatar
Li Zhang committed
70
71
72
73
    }

    if (!session_len_) {
        session_len_ = 2160;
lvhan028's avatar
lvhan028 committed
74
        TM_LOG_WARNING("[LlamaTritonModel] `session_len` is not set, default to %d.", (int)session_len_);
Li Zhang's avatar
Li Zhang committed
75
76
77
78
    }

    if (!max_context_token_num_) {
        max_context_token_num_ = (int)std::sqrt(max_batch_size_);
lvhan028's avatar
lvhan028 committed
79
        TM_LOG_WARNING("[LlamaTritonModel] `max_context_token_num` is not set, default to %d.",
Li Zhang's avatar
Li Zhang committed
80
81
82
83
84
                       (int)max_context_token_num_);
    }

    if (!step_length_) {
        step_length_ = 1;
lvhan028's avatar
lvhan028 committed
85
        TM_LOG_WARNING("[LlamaTritonModel] `step_length` is not set, default to %d.", (int)step_length_);
Li Zhang's avatar
Li Zhang committed
86
87
88
89
    }

    if (!cache_max_entry_count_) {
        cache_max_entry_count_ = 32;
lvhan028's avatar
lvhan028 committed
90
        TM_LOG_WARNING("[LlamaTritonModel] `cache_max_entry_count` is not set, default to %d.",
Li Zhang's avatar
Li Zhang committed
91
92
93
94
95
                       (int)cache_max_entry_count_);
    }

    if (!cache_chunk_size_) {
        cache_chunk_size_ = cache_max_entry_count_;
lvhan028's avatar
lvhan028 committed
96
        TM_LOG_WARNING("[LlamaTritonModel] `cache_chunk_size` is not set, default to %d.", (int)cache_chunk_size_);
Li Zhang's avatar
Li Zhang committed
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    }
}

template<typename T>
LlamaTritonModel<T>::LlamaTritonModel(size_t      tensor_para_size,
                                      size_t      pipeline_para_size,
                                      int         enable_custom_all_reduce,
                                      std::string model_dir):
    tensor_para_size_(tensor_para_size),
    pipeline_para_size_(pipeline_para_size),
    shared_weights_(std::vector<std::shared_ptr<ft::LlamaWeight<T>>>(ft::getDeviceCount())),
    enable_custom_all_reduce_(enable_custom_all_reduce)
{
    model_dir_ = model_dir;
    const std::string inifile{model_dir + "/config.ini"};
    INIReader         reader = INIReader(inifile);
    if (reader.ParseError() < 0) {
        std::cout << "[ERROR] Can't load '" << inifile << "'\n";
        ft::FT_CHECK(false);
    }

    model_name_            = reader.Get("llama", "model_name");
    head_num_              = reader.GetInteger("llama", "head_num");
120
    kv_head_num_           = reader.GetInteger("llama", "kv_head_num", 0);
Li Zhang's avatar
Li Zhang committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    size_per_head_         = reader.GetInteger("llama", "size_per_head");
    inter_size_            = reader.GetInteger("llama", "inter_size");
    num_layer_             = reader.GetInteger("llama", "num_layer");
    vocab_size_            = reader.GetInteger("llama", "vocab_size");
    norm_eps_              = reader.GetFloat("llama", "norm_eps");
    start_id_              = reader.GetInteger("llama", "start_id");
    end_id_                = reader.GetInteger("llama", "end_id");
    max_batch_size_        = reader.GetInteger("llama", "max_batch_size", 0);
    max_context_token_num_ = reader.GetInteger("llama", "max_context_token_num", 0);
    session_len_           = reader.GetInteger("llama", "session_len", 0);
    step_length_           = reader.GetInteger("llama", "step_length", 0);
    cache_max_entry_count_ = reader.GetInteger("llama", "cache_max_entry_count", 0);
    use_context_fmha_      = reader.GetInteger("llama", "use_context_fmha", 1);
    cache_chunk_size_      = reader.GetInteger("llama", "cache_chunk_size", 0);
Li Zhang's avatar
Li Zhang committed
135
    attn_bias_             = reader.GetInteger("llama", "attn_bias", 0);
136
    quant_policy_          = reader.GetInteger("llama", "quant_policy", 0);
137
    group_size_            = reader.GetInteger("llama", "group_size", 0);
Li Zhang's avatar
Li Zhang committed
138

139
    attn_params_.rotray_embedding_dim    = reader.GetInteger("llama", "rotary_embedding");
Lyu Han's avatar
Lyu Han committed
140
    attn_params_.rotary_embedding_base   = reader.GetFloat("llama", "rope_theta", 10000.0f);
141
142
143
144
    attn_params_.max_position_embeddings = reader.GetInteger("llama", "max_position_embeddings", 0);
    attn_params_.use_dynamic_ntk         = reader.GetInteger("llama", "use_dynamic_ntk", 0);
    attn_params_.use_logn_attn           = reader.GetInteger("llama", "use_logn_attn", 0);

Li Zhang's avatar
Li Zhang committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
    handleMissingParams();

    if (max_context_token_num_ <= max_batch_size_) {
        max_context_token_num_ *= session_len_;
    }

    shared_state_          = std::make_shared<typename ft::LlamaV2<T>::SharedState>();
    shared_state_->barrier = std::make_shared<ft::Barrier>(tensor_para_size);

    const auto device_count = ft::getDeviceCount();
    shared_instances_.resize(device_count);
    shared_mutexes_.resize(device_count);

    const std::string weight_type_str = reader.Get("llama", "weight_type");
    if (weight_type_str == "fp16") {
        weight_type_ = ft::WeightType::kFP16;
    }
    else if (weight_type_str == "fp32") {
        weight_type_ = ft::WeightType::kFP32;
    }
    else if (weight_type_str == "int8") {
        weight_type_ = ft::WeightType::kINT8;
    }
    else if (weight_type_str == "int4") {
        weight_type_ = ft::WeightType::kINT4;
    }
    else {
        std::cout << "[ERROR] Unsupported weight type: '" << weight_type_str << "'\n";
        ft::FT_CHECK(0);
    }
}

template<typename T>
std::unique_ptr<LlamaTritonSharedModelInstance<T>> LlamaTritonModel<T>::createSharedModelInstance(
    int                                                               device_id,
    int                                                               rank,
    std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
    std::shared_ptr<ft::AbstractCustomComm>                           custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    /// TODO: this stream handle is leaked
    cudaStream_t stream{};
    ft::check_cuda_error(cudaStreamCreate(&stream));

    allocator->setStream(stream);

    cublasHandle_t   cublas_handle;
    cublasLtHandle_t cublaslt_handle;

    cublasCreate(&cublas_handle);
    cublasLtCreate(&cublaslt_handle);
    cublasSetStream(cublas_handle, stream);

    std::unique_ptr<ft::cublasAlgoMap>   cublas_algo_map(new ft::cublasAlgoMap("gemm_config.in"));
    std::unique_ptr<std::mutex>          cublas_wrapper_mutex(new std::mutex());
    std::unique_ptr<ft::cublasMMWrapper> cublas_wrapper(new ft::cublasMMWrapper(
        cublas_handle, cublaslt_handle, stream, cublas_algo_map.get(), cublas_wrapper_mutex.get(), allocator.get()));

    std::unique_ptr<cudaDeviceProp> cuda_device_prop_ptr(new cudaDeviceProp);
    ft::check_cuda_error(cudaGetDeviceProperties(cuda_device_prop_ptr.get(), device_id));

    if (std::is_same<T, half>::value) {
        cublas_wrapper->setGemmConfig(CUDA_R_16F, CUDA_R_16F, CUDA_R_16F, CUDA_R_32F);
    }
    else if (std::is_same<T, float>::value) {
        cublas_wrapper->setFP32GemmConfig();
    }

    ft::NcclParam tensor_para   = nccl_params.first[comms_rank];
    ft::NcclParam pipeline_para = nccl_params.second[comms_rank];

    ft::FT_CHECK(tensor_para.world_size_ == tensor_para_size_);
    ft::FT_CHECK(pipeline_para.world_size_ = pipeline_para_size_);

    auto llama = std::make_unique<ft::LlamaV2<T>>(head_num_,
225
                                                  kv_head_num_,
Li Zhang's avatar
Li Zhang committed
226
227
228
229
                                                  size_per_head_,
                                                  inter_size_,
                                                  num_layer_,
                                                  vocab_size_,
230
                                                  attn_params_,
Li Zhang's avatar
Li Zhang committed
231
232
233
234
235
236
237
238
239
                                                  norm_eps_,
                                                  max_batch_size_,
                                                  max_context_token_num_,
                                                  session_len_,
                                                  step_length_,
                                                  start_id_,
                                                  end_id_,
                                                  cache_max_entry_count_,
                                                  cache_chunk_size_,
240
                                                  quant_policy_,
Li Zhang's avatar
Li Zhang committed
241
242
243
244
245
246
247
248
249
250
251
                                                  use_context_fmha_,
                                                  shared_state_,
                                                  shared_weights_[device_id].get(),
                                                  tensor_para,
                                                  stream,
                                                  cublas_wrapper.get(),
                                                  allocator.get(),
                                                  false,  // is_free_buffer_after_forward,
                                                  cuda_device_prop_ptr.get());

    return std::make_unique<LlamaTritonSharedModelInstance<T>>(
Lyu Han's avatar
Lyu Han committed
252
        LlamaTritonSharedModelInstance<T>{std::move(allocator),
Li Zhang's avatar
Li Zhang committed
253
254
255
256
                                          std::move(cublas_algo_map),
                                          std::move(cublas_wrapper_mutex),
                                          std::move(cublas_wrapper),
                                          std::move(cuda_device_prop_ptr),
Lyu Han's avatar
Lyu Han committed
257
258
                                          shared_weights_[device_id],
                                          std::move(llama),
Li Zhang's avatar
Li Zhang committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
                                          session_len_});
}

template<typename T>
std::unique_ptr<AbstractTransformerModelInstance>
LlamaTritonModel<T>::createModelInstance(int                                                               device_id,
                                         int                                                               rank,
                                         cudaStream_t                                                      stream,
                                         std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>> nccl_params,
                                         std::shared_ptr<ft::AbstractCustomComm> custom_all_reduce_comm)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    // const int comms_rank = device_id % (tensor_para_size_ * pipeline_para_size_);

    std::shared_ptr<LlamaTritonSharedModelInstance<T>> instance;
    {
        std::lock_guard<std::mutex> lock(shared_mutexes_[device_id]);
        instance = shared_instances_[device_id].lock();
        if (!instance) {
            instance = createSharedModelInstance(device_id, rank, nccl_params, custom_all_reduce_comm);
Chen Xin's avatar
Chen Xin committed
279
            instance->llm->setFfiLock(ffi_lock_);
Li Zhang's avatar
Li Zhang committed
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
            shared_instances_[device_id] = instance;
        }
    }

    std::unique_ptr<ft::Allocator<ft::AllocatorType::CUDA>> allocator(
        new ft::Allocator<ft::AllocatorType::CUDA>(device_id));

    allocator->setStream(stream);

    return std::make_unique<LlamaTritonModelInstance<T>>(instance, std::move(allocator));
}

template<typename T>
void LlamaTritonModel<T>::createSharedWeights(int device_id, int rank)
{
    ft::check_cuda_error(cudaSetDevice(device_id));
    const int tensor_para_rank   = rank % tensor_para_size_;
    const int pipeline_para_rank = rank / tensor_para_size_;
    ft::FT_CHECK(pipeline_para_size_ == 1 && pipeline_para_rank == 0);
299
300
301
    shared_weights_[device_id] = std::make_shared<ft::LlamaWeight<T>>(head_num_,
                                                                      kv_head_num_,
                                                                      size_per_head_,
Li Zhang's avatar
Li Zhang committed
302
303
304
                                                                      inter_size_,
                                                                      vocab_size_,
                                                                      num_layer_,
Li Zhang's avatar
Li Zhang committed
305
                                                                      attn_bias_,
306
307
                                                                      weight_type_,
                                                                      group_size_,
Li Zhang's avatar
Li Zhang committed
308
                                                                      tensor_para_size_,
309
                                                                      tensor_para_rank);
Li Zhang's avatar
Li Zhang committed
310
311
312
313
314
315
316
317
318
    shared_weights_[device_id]->loadModel(model_dir_);
    return;
}

template<typename T>
std::string LlamaTritonModel<T>::toString()
{
    std::stringstream ss;
    ss << "Model: "
319
320
321
322
323
324
325
326
       << "\nhead_num: " << head_num_ << "\nkv_head_num: " << kv_head_num_ << "\nsize_per_head: " << size_per_head_
       << "\ninter_size: " << inter_size_ << "\nnum_layer: " << num_layer_ << "\nvocab_size: " << vocab_size_
       << "\nattn_bias: " << attn_bias_ << "\nmax_batch_size: " << max_batch_size_
       << "\nmax_context_token_num: " << max_context_token_num_ << "\nsession_len: " << session_len_
       << "\nstep_length: " << step_length_ << "\ncache_max_entry_count: " << cache_max_entry_count_
       << "\ncache_chunk_size: " << cache_chunk_size_ << "\nuse_context_fmha: " << use_context_fmha_
       << "\nstart_id: " << start_id_ << "\ntensor_para_size: " << tensor_para_size_
       << "\npipeline_para_size: " << pipeline_para_size_ << "\nenable_custom_all_reduce: " << enable_custom_all_reduce_
327
328
       << "\nmodel_name: " << model_name_ << "\nmodel_dir: " << model_dir_ << "\nquant_policy: " << quant_policy_
       << "\ngroup_size: " << group_size_ << std::endl;
Li Zhang's avatar
Li Zhang committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

    return ss.str();
}

template<typename T>
void LlamaTritonModel<T>::createCustomComms(
    std::vector<std::shared_ptr<ft::AbstractCustomComm>>* custom_all_reduce_comms, int world_size)
{
    using commDataType = typename ft::CustomARCommTypeConverter<T>::Type;
    ft::initCustomAllReduceComm<commDataType>(custom_all_reduce_comms, enable_custom_all_reduce_, world_size);
}

template<typename T>
std::pair<std::vector<ft::NcclParam>, std::vector<ft::NcclParam>>
LlamaTritonModel<T>::createNcclParams(const int node_id, const int device_id_start, const bool multi_node)
{
    const auto device_count     = ft::getDeviceCount();
    bool       need_nccl_params = false;
    // create nccl group when there are non-occupied devices
    for (int i = 0; i < device_count; ++i) {
        std::lock_guard<std::mutex> lock(shared_mutexes_[i]);
        if (shared_instances_[i].expired()) {
            need_nccl_params = true;
            break;
        }
    }
    if (need_nccl_params) {
        return AbstractTransformerModel::createNcclParams(node_id, device_id_start, multi_node);
    }
    else {
lvhan028's avatar
lvhan028 committed
359
        TM_LOG_INFO("Skipping NCCL param creation.");
Li Zhang's avatar
Li Zhang committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390

        const int tensor_para_size   = getTensorParaSize();
        const int pipeline_para_size = getPipelineParaSize();
        const int local_comm_size    = multi_node ? device_count : tensor_para_size * pipeline_para_size;

        std::vector<ft::NcclParam> tensor_para_params(local_comm_size);
        std::vector<ft::NcclParam> pipeline_para_params(local_comm_size);
        return {std::move(tensor_para_params), std::move(pipeline_para_params)};
    }
}

template<typename T>
std::unique_ptr<ft::AbstractInstanceComm> LlamaTritonModel<T>::createInstanceComm(int size)
{
    return std::make_unique<ft::LlamaInstanceComm>(size);
}

template<typename T>
int LlamaTritonModel<T>::getTensorParaSize()
{
    return tensor_para_size_;
}

template<typename T>
int LlamaTritonModel<T>::getPipelineParaSize()
{
    return pipeline_para_size_;
}

template struct LlamaTritonModel<float>;
template struct LlamaTritonModel<half>;