inference.py 20.7 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
22
23
import tempfile
import contextlib
zhuww's avatar
zhuww committed
24
import logging
Shenggan's avatar
Shenggan committed
25
26
27

import numpy as np
import torch
28
import torch.multiprocessing as mp
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
29
import pickle
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
30
import shutil
31
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
32

33
import fastfold
34
35
36
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
37
from fastfold.model.fastnn import set_chunk_size
38
from fastfold.data import data_pipeline, feature_pipeline, templates
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
39
from fastfold.data.tools import hhsearch, hmmsearch
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
40
41
from fastfold.workflow.template import FastFoldDataWorkFlow, FastFoldMultimerDataWorkFlow

42
from fastfold.utils.inject_fastnn import inject_fastnn
43
from fastfold.data.parsers import parse_fasta
44
45
46
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map

zhuww's avatar
zhuww committed
47
48
49
50
logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(level=logging.INFO)

oahzxl's avatar
oahzxl committed
51
52
53
if int(torch.__version__.split(".")[0]) >= 1 and int(torch.__version__.split(".")[1]) > 11:
    torch.backends.cuda.matmul.allow_tf32 = True

zhuww's avatar
zhuww committed
54
55
56
57
58
59
60
61
62
63
64
65

def seed_torch(seed=1029):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.use_deterministic_algorithms(True)
    
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
66
67
68
69
70
71
@contextlib.contextmanager
def temp_fasta_file(fasta_str: str):
    with tempfile.NamedTemporaryFile('w', suffix='.fasta') as fasta_file:
        fasta_file.write(fasta_str)
        fasta_file.seek(0)
        yield fasta_file.name
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
99
100
101
102
103
104
105
106
107
108
    parser.add_argument(
        "--pdb_seqres_database_path",
        type=str,
        default=None,
    )
    parser.add_argument(
        "--uniprot_database_path",
        type=str,
        default=None,
    )
109
110
111
112
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
113
114
    parser.add_argument("--hmmsearch_binary_path", type=str, default="hmmsearch")
    parser.add_argument("--hmmbuild_binary_path", type=str, default="hmmbuild")
115
116
117
118
119
120
121
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
122
    parser.add_argument('--chunk_size', type=int, default=None)
LuGY's avatar
LuGY committed
123
    parser.add_argument('--enable_workflow', default=False, action='store_true', help='run inference with ray workflow or not')
oahzxl's avatar
oahzxl committed
124
    parser.add_argument('--inplace', default=False, action='store_true')
Shenggan's avatar
Shenggan committed
125

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
126

127
128
129
130
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
131
    # init distributed for Dynamic Axial Parallelism
132
    fastfold.distributed.init_dap()
133
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
134
    config = model_config(args.model_name)
135
136
    if args.chunk_size:
        config.globals.chunk_size = args.chunk_size
oahzxl's avatar
oahzxl committed
137
    config.globals.inplace = args.inplace
138
    config.globals.is_multimer = args.model_preset == 'multimer'
Shenggan's avatar
Shenggan committed
139
140
141
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

142
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
143
    model = model.eval()
144
    model = model.cuda()
Shenggan's avatar
Shenggan committed
145

146
147
    set_chunk_size(model.globals.chunk_size)

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
164
165
166
167
168
169
170
171
    if args.model_preset == "multimer":
        inference_multimer_model(args)
    else:
        inference_monomer_model(args)


def inference_multimer_model(args):
    print("running in multimer mode...")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
172
    config = model_config(args.model_name)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
173
174
175
176
177
178
179
180
181
182
183
184
    
    predict_max_templates = 4

    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=predict_max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path,
    )

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
185
    if(not args.use_precomputed_alignments):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            if args.enable_workflow:
                print("Running alignment with ray workflow...")
                alignment_runner = FastFoldMultimerDataWorkFlow(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hmmsearch_binary_path=args.hmmsearch_binary_path,
                    hmmbuild_binary_path=args.hmmbuild_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    uniprot_database_path=args.uniprot_database_path,
                    pdb_seqres_database_path=args.pdb_seqres_database_path,
                    use_small_bfd=(args.bfd_database_path is None),
                    no_cpus=args.cpus
                )
            else:
                alignment_runner = data_pipeline.AlignmentRunnerMultimer(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hmmsearch_binary_path=args.hmmsearch_binary_path,
                    hmmbuild_binary_path=args.hmmbuild_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    uniprot_database_path=args.uniprot_database_path,
                    pdb_seqres_database_path=args.pdb_seqres_database_path,
                    use_small_bfd=(args.bfd_database_path is None),
                    no_cpus=args.cpus
                )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
217
218
219
220
221
222
223
224
225
226
227
228
229
    else:
        alignment_runner = None

    monomer_data_processor = data_pipeline.DataPipeline(
        template_featurizer=template_featurizer,
    )


    data_processor = data_pipeline.DataPipelineMultimer(
            monomer_data_pipeline=monomer_data_processor,
    )

    output_dir_base = args.output_dir
zhuww's avatar
zhuww committed
230
    
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
231
232
233
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
zhuww's avatar
zhuww committed
234
    # seed_torch(seed=1029)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
    
    feature_processor = feature_pipeline.FeaturePipeline(
        config.data
    )

    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if(not args.use_precomputed_alignments):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    fasta_path = args.fasta_path
    with open(fasta_path, "r") as fp:
        data = fp.read()

    lines = [
        l.replace('\n', '') 
        for prot in data.split('>') for l in prot.strip().split('\n', 1)
    ][1:]
    tags, seqs = lines[::2], lines[1::2]


    for tag, seq in zip(tags, seqs):
        local_alignment_dir = os.path.join(alignment_dir, tag)
        if(args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
264
265
266
            else:
                shutil.rmtree(local_alignment_dir)
                os.makedirs(local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
267
268
269
            
            chain_fasta_str = f'>chain_{tag}\n{seq}\n'
            with temp_fasta_file(chain_fasta_str) as chain_fasta_path:
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
270
271
272
273
274
275
276
277
                if args.enable_workflow:
                    print("Running alignment with ray workflow...")
                    t = time.perf_counter()
                    alignment_runner.run(chain_fasta_path, alignment_dir=local_alignment_dir)
                    print(f"Alignment data workflow time: {time.perf_counter() - t}")
                else:
                    alignment_runner.run(chain_fasta_path, local_alignment_dir)
                
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
278
279
280
281
282
283
284
                print(f"Finished running alignment for {tag}")
                
    local_alignment_dir = alignment_dir

    feature_dict = data_processor.process_fasta(
        fasta_path=fasta_path, alignment_dir=local_alignment_dir
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
285
    # feature_dict = pickle.load(open("/home/lcmql/data/features_pdb1o5d.pkl", "rb"))
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
286
287
288
289

    processed_feature_dict = feature_processor.process_features(
        feature_dict, mode='predict', is_multimer=True,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
290

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    batch = processed_feature_dict

    manager = mp.Manager()
    result_q = manager.Queue()
    torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))

    out = result_q.get()

    # Toss out the recycling dimensions --- we don't need them anymore
    batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
    
    plddt = out["plddt"]
    mean_plddt = np.mean(plddt)

    plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)

    unrelaxed_protein = protein.from_prediction(features=batch,
                                                result=out,
                                                b_factors=plddt_b_factors)

    # Save the unrelaxed PDB.
    unrelaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_unrelaxed.pdb')
    with open(unrelaxed_output_path, 'w') as f:
        f.write(protein.to_pdb(unrelaxed_protein))

zhuww's avatar
zhuww committed
317
318
319
320
321
    if(args.relaxation):
        amber_relaxer = relax.AmberRelaxation(
            use_gpu=True,
            **config.relax,
        )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
322

zhuww's avatar
zhuww committed
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
        # Relax the prediction.
        t = time.perf_counter()
        relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
        print(f"Relaxation time: {time.perf_counter() - t}")

        # Save the relaxed PDB.
        relaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_relaxed.pdb')
        with open(relaxed_output_path, 'w') as f:
            f.write(relaxed_pdb_str)
        
    if(args.save_outputs):
            output_dict_path = os.path.join(
                args.output_dir, f'{tag}_{args.model_name}_output_dict.pkl'
            )
            with open(output_dict_path, "wb") as fp:
                pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
340

zhuww's avatar
zhuww committed
341
            logger.info(f"Model output written to {output_dict_path}...")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
342
343


Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
344
345
def inference_monomer_model(args):
    print("running in monomer mode...")
346
347
    config = model_config(args.model_name)

Shenggan's avatar
Shenggan committed
348
349
350
351
352
353
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
354
355
        obsolete_pdbs_path=args.obsolete_pdbs_path
    )
Shenggan's avatar
Shenggan committed
356

357
358
359
360
361
362
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
363
364
365
366

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
zhuww's avatar
zhuww committed
367
    
Shenggan's avatar
Shenggan committed
368
369
370
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
zhuww's avatar
zhuww committed
371
372
    # seed_torch(seed=1029)
        
Shenggan's avatar
Shenggan committed
373
374
375
376
377
378
379
380
381
382
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
383
384
        fasta = fp.read()
    seqs, tags = parse_fasta(fasta)
LuGY's avatar
LuGY committed
385
    seq, tag = seqs[0], tags[0]
Shenggan's avatar
Shenggan committed
386

LuGY's avatar
LuGY committed
387
388
389
390
391
392
    print(f"tag:{tag}\nseq[{len(seq)}]:{seq}")
    batch = [None]
    
    fasta_path = os.path.join(args.output_dir, "tmp.fasta")
    with open(fasta_path, "w") as fp:
        fp.write(f">{tag}\n{seq}")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
393

LuGY's avatar
LuGY committed
394
395
    print("Generating features...")
    local_alignment_dir = os.path.join(alignment_dir, tag)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
396

LuGY's avatar
LuGY committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    if (args.use_precomputed_alignments is None):
        if not os.path.exists(local_alignment_dir):
            os.makedirs(local_alignment_dir)
        if args.enable_workflow:
            print("Running alignment with ray workflow...")
            alignment_data_workflow_runner = FastFoldDataWorkFlow(
                jackhmmer_binary_path=args.jackhmmer_binary_path,
                hhblits_binary_path=args.hhblits_binary_path,
                hhsearch_binary_path=args.hhsearch_binary_path,
                uniref90_database_path=args.uniref90_database_path,
                mgnify_database_path=args.mgnify_database_path,
                bfd_database_path=args.bfd_database_path,
                uniclust30_database_path=args.uniclust30_database_path,
                pdb70_database_path=args.pdb70_database_path,
                use_small_bfd=use_small_bfd,
                no_cpus=args.cpus,
            )
            t = time.perf_counter()
            alignment_data_workflow_runner.run(fasta_path, alignment_dir=local_alignment_dir)
            print(f"Alignment data workflow time: {time.perf_counter() - t}")
        else:
            alignment_runner = data_pipeline.AlignmentRunner(
                jackhmmer_binary_path=args.jackhmmer_binary_path,
                hhblits_binary_path=args.hhblits_binary_path,
                hhsearch_binary_path=args.hhsearch_binary_path,
                uniref90_database_path=args.uniref90_database_path,
                mgnify_database_path=args.mgnify_database_path,
                bfd_database_path=args.bfd_database_path,
                uniclust30_database_path=args.uniclust30_database_path,
                pdb70_database_path=args.pdb70_database_path,
                use_small_bfd=use_small_bfd,
                no_cpus=args.cpus,
            )
            alignment_runner.run(fasta_path, local_alignment_dir)
            
    feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                            alignment_dir=local_alignment_dir)

    # Remove temporary FASTA file
    os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
437

LuGY's avatar
LuGY committed
438
439
440
441
    processed_feature_dict = feature_processor.process_features(
        feature_dict,
        mode='predict',
    )
442

LuGY's avatar
LuGY committed
443
444
445
    batch = processed_feature_dict

    manager = mp.Manager()
zhuww's avatar
zhuww committed
446
    result_q = manager.Queue()                         
LuGY's avatar
LuGY committed
447
    torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
448

LuGY's avatar
LuGY committed
449
    out = result_q.get()
Shenggan's avatar
Shenggan committed
450

LuGY's avatar
LuGY committed
451
452
453
454
455
    # Toss out the recycling dimensions --- we don't need them anymore
    batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
    
    plddt = out["plddt"]
    mean_plddt = np.mean(plddt)
456

LuGY's avatar
LuGY committed
457
    plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
458

LuGY's avatar
LuGY committed
459
460
461
    unrelaxed_protein = protein.from_prediction(features=batch,
                                                result=out,
                                                b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
462

LuGY's avatar
LuGY committed
463
464
465
466
467
    # Save the unrelaxed PDB.
    unrelaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_unrelaxed.pdb')
    with open(unrelaxed_output_path, 'w') as f:
        f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
468

zhuww's avatar
zhuww committed
469
470
471
472
473
    if(args.relaxation):
        amber_relaxer = relax.AmberRelaxation(
            use_gpu=True,
            **config.relax,
        )
zhuww's avatar
zhuww committed
474

zhuww's avatar
zhuww committed
475
476
477
478
479
480
481
482
483
484
        # Relax the prediction.
        t = time.perf_counter()
        relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
        print(f"Relaxation time: {time.perf_counter() - t}")

        # Save the relaxed PDB.
        relaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_relaxed.pdb')
        with open(relaxed_output_path, 'w') as f:
            f.write(relaxed_pdb_str)
zhuww's avatar
zhuww committed
485
486
487
488
489
490
491
492
493
    
    if(args.save_outputs):
            output_dict_path = os.path.join(
                args.output_dir, f'{tag}_{args.model_name}_output_dict.pkl'
            )
            with open(output_dict_path, "wb") as fp:
                pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)

            logger.info(f"Model output written to {output_dict_path}...")
Shenggan's avatar
Shenggan committed
494

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
495

Shenggan's avatar
Shenggan committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
521
             model_{1-5}_ptm or model_{1-5}_multimer, as defined on the AlphaFold GitHub.""")
Shenggan's avatar
Shenggan committed
522
523
524
525
526
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
527
             ./data/params""")
zhuww's avatar
zhuww committed
528
529
530
    parser.add_argument(
        "--relaxation", action="store_false", default=False,
    )
zhuww's avatar
zhuww committed
531
532
533
534
    parser.add_argument(
        "--save_outputs", action="store_true", default=False,
        help="Whether to save all model outputs, including embeddings, etc."
    )
Shenggan's avatar
Shenggan committed
535
536
537
538
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
539
540
541
542
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
543
544
    parser.add_argument('--preset',
                        type=str,
545
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
546
547
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
548
549
550
551
552
553
554
555
    parser.add_argument(
        "--model_preset",
        type=str,
        default="monomer",
        choices=["monomer", "multimer"],
        help="Choose preset model configuration - the monomer model, the monomer model with "
        "extra ensembling, monomer model with pTM head, or multimer model",
    )
Shenggan's avatar
Shenggan committed
556
557
558
559
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
560
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
561
562

    main(args)