inference.py 12.1 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Shenggan's avatar
Shenggan committed
22
23
24

import numpy as np
import torch
25
import torch.multiprocessing as mp
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
26
import pickle
27
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
28

29
import fastfold
30
31
32
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
33
from fastfold.model.fastnn import set_chunk_size
34
from fastfold.data import data_pipeline, feature_pipeline, templates
LuGY's avatar
LuGY committed
35
from fastfold.workflow.template import FastFoldDataWorkFlow
36
from fastfold.utils import inject_fastnn
37
from fastfold.data.parsers import parse_fasta
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map


def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
LuGY's avatar
LuGY committed
79
    parser.add_argument('--enable_workflow', default=False, action='store_true', help='run inference with ray workflow or not')
Shenggan's avatar
Shenggan committed
80

81
82
83
84
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
85
    # init distributed for Dynamic Axial Parallelism
86
    fastfold.distributed.init_dap()
87
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
88
89
90
91
    config = model_config(args.model_name)
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

92
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
93
    model = model.eval()
94
    model = model.cuda()
Shenggan's avatar
Shenggan committed
95

96
97
    set_chunk_size(model.globals.chunk_size)

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
    config = model_config(args.model_name)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
115
    global_is_multimer = True if args.model_preset == "multimer" else False
116

Shenggan's avatar
Shenggan committed
117
118
119
120
121
122
123
124
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path)

125
126
127
128
129
130
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
148
149
        fasta = fp.read()
    seqs, tags = parse_fasta(fasta)
Shenggan's avatar
Shenggan committed
150
151

    for tag, seq in zip(tags, seqs):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
152
        print(f"tag:{tag} seq:{seq}")
153
        batch = [None]
154
155
156
157
158
159
160
        
        fasta_path = os.path.join(args.output_dir, "tmp.fasta")
        with open(fasta_path, "w") as fp:
            fp.write(f">{tag}\n{seq}")

        print("Generating features...")
        local_alignment_dir = os.path.join(alignment_dir, tag)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        # if global_is_multimer:
        #     print("Multimer")
        # else:
        #     if (args.use_precomputed_alignments is None):
        #         if not os.path.exists(local_alignment_dir):
        #             os.makedirs(local_alignment_dir)
        #         if args.enable_workflow:
        #             print("Running alignment with ray workflow...")
        #             alignment_data_workflow_runner = FastFoldDataWorkFlow(
        #                 jackhmmer_binary_path=args.jackhmmer_binary_path,
        #                 hhblits_binary_path=args.hhblits_binary_path,
        #                 hhsearch_binary_path=args.hhsearch_binary_path,
        #                 uniref90_database_path=args.uniref90_database_path,
        #                 mgnify_database_path=args.mgnify_database_path,
        #                 bfd_database_path=args.bfd_database_path,
        #                 uniclust30_database_path=args.uniclust30_database_path,
        #                 pdb70_database_path=args.pdb70_database_path,
        #                 use_small_bfd=use_small_bfd,
        #                 no_cpus=args.cpus,
        #             )
        #             t = time.perf_counter()
        #             alignment_data_workflow_runner.run(fasta_path, output_dir=output_dir_base, alignment_dir=local_alignment_dir)
        #             print(f"Alignment data workflow time: {time.perf_counter() - t}")
        #         else:
        #             alignment_runner = data_pipeline.AlignmentRunner(
        #                 jackhmmer_binary_path=args.jackhmmer_binary_path,
        #                 hhblits_binary_path=args.hhblits_binary_path,
        #                 hhsearch_binary_path=args.hhsearch_binary_path,
        #                 uniref90_database_path=args.uniref90_database_path,
        #                 mgnify_database_path=args.mgnify_database_path,
        #                 bfd_database_path=args.bfd_database_path,
        #                 uniclust30_database_path=args.uniclust30_database_path,
        #                 pdb70_database_path=args.pdb70_database_path,
        #                 use_small_bfd=use_small_bfd,
        #                 no_cpus=args.cpus,
        #             )
        #             alignment_runner.run(fasta_path, local_alignment_dir)

        # feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
        #                                             alignment_dir=local_alignment_dir)

        feature_dict = pickle.load(open("/home/lcmql/data/features_pdb1o5d.pkl", "rb"))
203
204
        # Remove temporary FASTA file
        os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
205

206
207
208
209
        processed_feature_dict = feature_processor.process_features(
            feature_dict,
            mode='predict',
        )
210

211
        batch = processed_feature_dict
Shenggan's avatar
Shenggan committed
212

213
214
215
        manager = mp.Manager()
        result_q = manager.Queue()
        torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
216

217
        out = result_q.get()
218

219
220
221
222
223
        # Toss out the recycling dimensions --- we don't need them anymore
        batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
        
        plddt = out["plddt"]
        mean_plddt = np.mean(plddt)
Shenggan's avatar
Shenggan committed
224

225
        plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
226

227
228
229
        unrelaxed_protein = protein.from_prediction(features=batch,
                                                    result=out,
                                                    b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
230

231
232
233
234
235
        # Save the unrelaxed PDB.
        unrelaxed_output_path = os.path.join(args.output_dir,
                                                f'{tag}_{args.model_name}_unrelaxed.pdb')
        with open(unrelaxed_output_path, 'w') as f:
            f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
236

237
238
239
240
        amber_relaxer = relax.AmberRelaxation(
            use_gpu=True,
            **config.relax,
        )
Shenggan's avatar
Shenggan committed
241

242
243
244
245
        # Relax the prediction.
        t = time.perf_counter()
        relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
        print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
246

247
248
249
250
251
        # Save the relaxed PDB.
        relaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_relaxed.pdb')
        with open(relaxed_output_path, 'w') as f:
            f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
             model_{1-5}_ptm, as defined on the AlphaFold GitHub.""")
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
285
             ./data/params""")
Shenggan's avatar
Shenggan committed
286
287
288
289
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
290
291
292
293
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
294
295
    parser.add_argument('--preset',
                        type=str,
296
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
297
298
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
299
300
301
302
303
304
305
306
    parser.add_argument(
        "--model_preset",
        type=str,
        default="monomer",
        choices=["monomer", "multimer"],
        help="Choose preset model configuration - the monomer model, the monomer model with "
        "extra ensembling, monomer model with pTM head, or multimer model",
    )
Shenggan's avatar
Shenggan committed
307
308
309
310
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
311
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
312
313

    main(args)