"src/lib/vscode:/vscode.git/clone" did not exist on "24a177a149036ed712b4e830c7412faa0abb49a0"
inference.py 9.98 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Shenggan's avatar
Shenggan committed
22
23
24

import numpy as np
import torch
25
import torch.multiprocessing as mp
26
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
27

28
import fastfold
29
30
31
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
32
from fastfold.model.fastnn import set_chunk_size
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from fastfold.data import data_pipeline, feature_pipeline, templates
from fastfold.utils import inject_fastnn
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map


def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
Shenggan's avatar
Shenggan committed
76
77


78
79
80
81
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
82
    # init distributed for Dynamic Axial Parallelism
83
    fastfold.distributed.init_dap()
84
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
85
86
87
88
    config = model_config(args.model_name)
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

89
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
90
    model = model.eval()
91
    model = model.cuda()
Shenggan's avatar
Shenggan committed
92

93
94
    set_chunk_size(model.globals.chunk_size)

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
    config = model_config(args.model_name)

Shenggan's avatar
Shenggan committed
113
114
115
116
117
118
119
120
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path)

121
122
123
124
125
126
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
        lines = [l.strip() for l in fp.readlines()]

    tags, seqs = lines[::2], lines[1::2]
    tags = [l[1:] for l in tags]

    for tag, seq in zip(tags, seqs):
150
        batch = [None]
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        
        fasta_path = os.path.join(args.output_dir, "tmp.fasta")
        with open(fasta_path, "w") as fp:
            fp.write(f">{tag}\n{seq}")

        print("Generating features...")
        local_alignment_dir = os.path.join(alignment_dir, tag)
        if (args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)

            alignment_runner = data_pipeline.AlignmentRunner(
                jackhmmer_binary_path=args.jackhmmer_binary_path,
                hhblits_binary_path=args.hhblits_binary_path,
                hhsearch_binary_path=args.hhsearch_binary_path,
                uniref90_database_path=args.uniref90_database_path,
                mgnify_database_path=args.mgnify_database_path,
                bfd_database_path=args.bfd_database_path,
                uniclust30_database_path=args.uniclust30_database_path,
                pdb70_database_path=args.pdb70_database_path,
                use_small_bfd=use_small_bfd,
                no_cpus=args.cpus,
Shenggan's avatar
Shenggan committed
173
            )
174
            alignment_runner.run(fasta_path, local_alignment_dir)
Shenggan's avatar
Shenggan committed
175

176
177
        feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                                    alignment_dir=local_alignment_dir)
178

179
180
        # Remove temporary FASTA file
        os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
181

182
183
184
185
        processed_feature_dict = feature_processor.process_features(
            feature_dict,
            mode='predict',
        )
186

187
        batch = processed_feature_dict
Shenggan's avatar
Shenggan committed
188

189
190
191
        manager = mp.Manager()
        result_q = manager.Queue()
        torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
192

193
        out = result_q.get()
194

195
196
197
198
199
        # Toss out the recycling dimensions --- we don't need them anymore
        batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
        
        plddt = out["plddt"]
        mean_plddt = np.mean(plddt)
Shenggan's avatar
Shenggan committed
200

201
        plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
202

203
204
205
        unrelaxed_protein = protein.from_prediction(features=batch,
                                                    result=out,
                                                    b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
206

207
208
209
210
211
        # Save the unrelaxed PDB.
        unrelaxed_output_path = os.path.join(args.output_dir,
                                                f'{tag}_{args.model_name}_unrelaxed.pdb')
        with open(unrelaxed_output_path, 'w') as f:
            f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
212

213
214
215
216
        amber_relaxer = relax.AmberRelaxation(
            use_gpu=True,
            **config.relax,
        )
Shenggan's avatar
Shenggan committed
217

218
219
220
221
        # Relax the prediction.
        t = time.perf_counter()
        relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
        print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
222

223
224
225
226
227
        # Save the relaxed PDB.
        relaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_relaxed.pdb')
        with open(relaxed_output_path, 'w') as f:
            f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
             model_{1-5}_ptm, as defined on the AlphaFold GitHub.""")
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
261
             ./data/params""")
Shenggan's avatar
Shenggan committed
262
263
264
265
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
266
267
268
269
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
270
271
    parser.add_argument('--preset',
                        type=str,
272
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
273
274
275
276
277
278
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
279
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
280
281

    main(args)