inference.py 9.67 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Shenggan's avatar
Shenggan committed
22
23
24

import numpy as np
import torch
25
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
26

27
import fastfold
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
from fastfold.data import data_pipeline, feature_pipeline, templates
from fastfold.utils import inject_fastnn
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map


def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
Shenggan's avatar
Shenggan committed
74
75
76


def main(args):
77
    # init distributed for Dynamic Axial Parallelism
78
    fastfold.distributed.init_dap()
79

Shenggan's avatar
Shenggan committed
80
81
82
83
    config = model_config(args.model_name)
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

84
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
85
86
    model = model.eval()
    #script_preset_(model)
87
    model = model.cuda()
Shenggan's avatar
Shenggan committed
88
89
90
91
92
93
94
95
96

    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path)

97
98
99
100
101
102
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
        lines = [l.strip() for l in fp.readlines()]

    tags, seqs = lines[::2], lines[1::2]
    tags = [l[1:] for l in tags]

    for tag, seq in zip(tags, seqs):
126
        batch = [None]
127
        if torch.distributed.get_rank() == 0:
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
            fasta_path = os.path.join(args.output_dir, "tmp.fasta")
            with open(fasta_path, "w") as fp:
                fp.write(f">{tag}\n{seq}")

            print("Generating features...")
            local_alignment_dir = os.path.join(alignment_dir, tag)
            if (args.use_precomputed_alignments is None):
                if not os.path.exists(local_alignment_dir):
                    os.makedirs(local_alignment_dir)

                alignment_runner = data_pipeline.AlignmentRunner(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hhsearch_binary_path=args.hhsearch_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    pdb70_database_path=args.pdb70_database_path,
                    use_small_bfd=use_small_bfd,
                    no_cpus=args.cpus,
                )
                alignment_runner.run(fasta_path, local_alignment_dir)

            feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                                        alignment_dir=local_alignment_dir)

            # Remove temporary FASTA file
            os.remove(fasta_path)

            processed_feature_dict = feature_processor.process_features(
                feature_dict,
                mode='predict',
Shenggan's avatar
Shenggan committed
161
162
            )

163
            batch = [processed_feature_dict]
Shenggan's avatar
Shenggan committed
164

165
166

        torch.distributed.broadcast_object_list(batch, src=0)
167
        batch = batch[0]
Shenggan's avatar
Shenggan committed
168
169

        print("Executing model...")
170

Shenggan's avatar
Shenggan committed
171
        with torch.no_grad():
172
            batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}
Shenggan's avatar
Shenggan committed
173
174
175
176
177

            t = time.perf_counter()
            out = model(batch)
            print(f"Inference time: {time.perf_counter() - t}")

178
        torch.distributed.barrier()
179

180
        if torch.distributed.get_rank() == 0:
181
182
183
            # Toss out the recycling dimensions --- we don't need them anymore
            batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
            out = tensor_tree_map(lambda x: np.array(x.cpu()), out)
Shenggan's avatar
Shenggan committed
184

185
186
            plddt = out["plddt"]
            mean_plddt = np.mean(plddt)
Shenggan's avatar
Shenggan committed
187

188
            plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
189

190
191
192
            unrelaxed_protein = protein.from_prediction(features=batch,
                                                        result=out,
                                                        b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
193

194
195
196
197
198
            # Save the unrelaxed PDB.
            unrelaxed_output_path = os.path.join(args.output_dir,
                                                 f'{tag}_{args.model_name}_unrelaxed.pdb')
            with open(unrelaxed_output_path, 'w') as f:
                f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
199

200
201
202
203
204
205
206
207
208
            amber_relaxer = relax.AmberRelaxation(
                use_gpu=True,
                **config.relax,
            )

            # Relax the prediction.
            t = time.perf_counter()
            relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
            print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
209

210
211
212
213
214
            # Save the relaxed PDB.
            relaxed_output_path = os.path.join(args.output_dir,
                                               f'{tag}_{args.model_name}_relaxed.pdb')
            with open(relaxed_output_path, 'w') as f:
                f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
215

216
        torch.distributed.barrier()
Shenggan's avatar
Shenggan committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
             model_{1-5}_ptm, as defined on the AlphaFold GitHub.""")
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
250
             ./data/params""")
Shenggan's avatar
Shenggan committed
251
252
253
254
255
256
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
    parser.add_argument('--preset',
                        type=str,
257
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
258
259
260
261
262
263
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
264
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
265
266

    main(args)