inference.py 16 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
22
23
import tempfile
import contextlib
Shenggan's avatar
Shenggan committed
24
25
26

import numpy as np
import torch
27
import torch.multiprocessing as mp
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
28
import pickle
29
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
30

31
import fastfold
32
33
34
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
35
from fastfold.model.fastnn import set_chunk_size
36
from fastfold.data import data_pipeline, feature_pipeline, templates
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
37
from fastfold.data.tools import hhsearch, hmmsearch
LuGY's avatar
LuGY committed
38
from fastfold.workflow.template import FastFoldDataWorkFlow
39
from fastfold.utils import inject_fastnn
40
from fastfold.data.parsers import parse_fasta
41
42
43
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
44
45
46
47
48
49
@contextlib.contextmanager
def temp_fasta_file(fasta_str: str):
    with tempfile.NamedTemporaryFile('w', suffix='.fasta') as fasta_file:
        fasta_file.write(fasta_str)
        fasta_file.seek(0)
        yield fasta_file.name
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
77
78
79
80
81
82
83
84
85
86
    parser.add_argument(
        "--pdb_seqres_database_path",
        type=str,
        default=None,
    )
    parser.add_argument(
        "--uniprot_database_path",
        type=str,
        default=None,
    )
87
88
89
90
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
91
92
    parser.add_argument("--hmmsearch_binary_path", type=str, default="hmmsearch")
    parser.add_argument("--hmmbuild_binary_path", type=str, default="hmmbuild")
93
94
95
96
97
98
99
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
LuGY's avatar
LuGY committed
100
    parser.add_argument('--enable_workflow', default=False, action='store_true', help='run inference with ray workflow or not')
Shenggan's avatar
Shenggan committed
101

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
102

103
104
105
106
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
107
    # init distributed for Dynamic Axial Parallelism
108
    fastfold.distributed.init_dap()
109
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
110
111
112
113
    config = model_config(args.model_name)
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

114
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
115
    model = model.eval()
116
    model = model.cuda()
Shenggan's avatar
Shenggan committed
117

118
119
    set_chunk_size(model.globals.chunk_size)

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
136
137
138
139
140
141
142
143
    if args.model_preset == "multimer":
        inference_multimer_model(args)
    else:
        inference_monomer_model(args)


def inference_multimer_model(args):
    print("running in multimer mode...")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
144
    config = model_config(args.model_name)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
    # feature_dict = pickle.load(open("/home/lcmql/data/features_pdb1o5d.pkl", "rb"))
    
    predict_max_templates = 4

    if not args.use_precomputed_alignments:
        template_searcher = hmmsearch.Hmmsearch(
            binary_path=args.hmmsearch_binary_path,
            hmmbuild_binary_path=args.hmmbuild_binary_path,
            database_path=args.pdb_seqres_database_path,
        )
    else:
        template_searcher = None

    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=predict_max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path,
    )

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    if(not args.use_precomputed_alignments):
        alignment_runner = data_pipeline.AlignmentRunnerMultimer(
            jackhmmer_binary_path=args.jackhmmer_binary_path,
            hhblits_binary_path=args.hhblits_binary_path,
            uniref90_database_path=args.uniref90_database_path,
            mgnify_database_path=args.mgnify_database_path,
            bfd_database_path=args.bfd_database_path,
            uniclust30_database_path=args.uniclust30_database_path,
            uniprot_database_path=args.uniprot_database_path,
            template_searcher=template_searcher,
            use_small_bfd=(args.bfd_database_path is None),
            no_cpus=args.cpus,
        )
    else:
        alignment_runner = None

    monomer_data_processor = data_pipeline.DataPipeline(
        template_featurizer=template_featurizer,
    )


    data_processor = data_pipeline.DataPipelineMultimer(
            monomer_data_pipeline=monomer_data_processor,
    )

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    
    feature_processor = feature_pipeline.FeaturePipeline(
        config.data
    )

    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if(not args.use_precomputed_alignments):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    fasta_path = args.fasta_path
    with open(fasta_path, "r") as fp:
        data = fp.read()

    lines = [
        l.replace('\n', '') 
        for prot in data.split('>') for l in prot.strip().split('\n', 1)
    ][1:]
    tags, seqs = lines[::2], lines[1::2]


    for tag, seq in zip(tags, seqs):
        local_alignment_dir = os.path.join(alignment_dir, tag)
        if(args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)
            
            chain_fasta_str = f'>chain_{tag}\n{seq}\n'
            with temp_fasta_file(chain_fasta_str) as chain_fasta_path:
                alignment_runner.run(
                    chain_fasta_path, local_alignment_dir
                )
                print(f"Finished running alignment for {tag}")
                
    local_alignment_dir = alignment_dir

    feature_dict = data_processor.process_fasta(
        fasta_path=fasta_path, alignment_dir=local_alignment_dir
    )

    processed_feature_dict = feature_processor.process_features(
        feature_dict, mode='predict', is_multimer=True,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
242
243
244

def inference_monomer_model(args):
    print("running in monomer mode...")
245
246
    config = model_config(args.model_name)

Shenggan's avatar
Shenggan committed
247
248
249
250
251
252
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
253
254
        obsolete_pdbs_path=args.obsolete_pdbs_path
    )
Shenggan's avatar
Shenggan committed
255

256
257
258
259
260
261
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
279
280
        fasta = fp.read()
    seqs, tags = parse_fasta(fasta)
Shenggan's avatar
Shenggan committed
281
282

    for tag, seq in zip(tags, seqs):
283
        print(f"tag:{tag}\nseq[{len(seq)}]:{seq}")
284
        batch = [None]
285
286
287
288
289
290
291
        
        fasta_path = os.path.join(args.output_dir, "tmp.fasta")
        with open(fasta_path, "w") as fp:
            fp.write(f">{tag}\n{seq}")

        print("Generating features...")
        local_alignment_dir = os.path.join(alignment_dir, tag)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

        if (args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)
            if args.enable_workflow:
                print("Running alignment with ray workflow...")
                alignment_data_workflow_runner = FastFoldDataWorkFlow(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hhsearch_binary_path=args.hhsearch_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    pdb70_database_path=args.pdb70_database_path,
                    use_small_bfd=use_small_bfd,
                    no_cpus=args.cpus,
                )
                t = time.perf_counter()
                alignment_data_workflow_runner.run(fasta_path, output_dir=output_dir_base, alignment_dir=local_alignment_dir)
                print(f"Alignment data workflow time: {time.perf_counter() - t}")
            else:
                alignment_runner = data_pipeline.AlignmentRunner(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hhsearch_binary_path=args.hhsearch_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    pdb70_database_path=args.pdb70_database_path,
                    use_small_bfd=use_small_bfd,
                    no_cpus=args.cpus,
                )
                alignment_runner.run(fasta_path, local_alignment_dir)
                
        feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                                alignment_dir=local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
330

331
332
        # Remove temporary FASTA file
        os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
333

334
335
336
337
        processed_feature_dict = feature_processor.process_features(
            feature_dict,
            mode='predict',
        )
338

339
        batch = processed_feature_dict
Shenggan's avatar
Shenggan committed
340

341
342
343
        manager = mp.Manager()
        result_q = manager.Queue()
        torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
344

345
        out = result_q.get()
346

347
348
349
350
351
        # Toss out the recycling dimensions --- we don't need them anymore
        batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
        
        plddt = out["plddt"]
        mean_plddt = np.mean(plddt)
Shenggan's avatar
Shenggan committed
352

353
        plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
354

355
356
357
        unrelaxed_protein = protein.from_prediction(features=batch,
                                                    result=out,
                                                    b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
358

359
360
361
362
363
        # Save the unrelaxed PDB.
        unrelaxed_output_path = os.path.join(args.output_dir,
                                                f'{tag}_{args.model_name}_unrelaxed.pdb')
        with open(unrelaxed_output_path, 'w') as f:
            f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
364

365
366
367
368
        amber_relaxer = relax.AmberRelaxation(
            use_gpu=True,
            **config.relax,
        )
Shenggan's avatar
Shenggan committed
369

370
371
372
373
        # Relax the prediction.
        t = time.perf_counter()
        relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
        print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
374

375
376
377
378
379
        # Save the relaxed PDB.
        relaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_relaxed.pdb')
        with open(relaxed_output_path, 'w') as f:
            f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
380

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
381

Shenggan's avatar
Shenggan committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
407
             model_{1-5}_ptm or model_{1-5}_multimer, as defined on the AlphaFold GitHub.""")
Shenggan's avatar
Shenggan committed
408
409
410
411
412
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
413
             ./data/params""")
Shenggan's avatar
Shenggan committed
414
415
416
417
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
418
419
420
421
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
422
423
    parser.add_argument('--preset',
                        type=str,
424
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
425
426
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
427
428
429
430
431
432
433
434
    parser.add_argument(
        "--model_preset",
        type=str,
        default="monomer",
        choices=["monomer", "multimer"],
        help="Choose preset model configuration - the monomer model, the monomer model with "
        "extra ensembling, monomer model with pTM head, or multimer model",
    )
Shenggan's avatar
Shenggan committed
435
436
437
438
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
439
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
440
441

    main(args)