inference.py 19.2 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
22
23
import tempfile
import contextlib
Shenggan's avatar
Shenggan committed
24
25
26

import numpy as np
import torch
27
import torch.multiprocessing as mp
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
28
import pickle
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
29
import shutil
30
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
31

32
import fastfold
33
34
35
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
36
from fastfold.model.fastnn import set_chunk_size
37
from fastfold.data import data_pipeline, feature_pipeline, templates
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
38
from fastfold.data.tools import hhsearch, hmmsearch
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
39
40
from fastfold.workflow.template import FastFoldDataWorkFlow, FastFoldMultimerDataWorkFlow

41
from fastfold.utils import inject_fastnn
42
from fastfold.data.parsers import parse_fasta
43
44
45
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
46
47
48
49
50
51
@contextlib.contextmanager
def temp_fasta_file(fasta_str: str):
    with tempfile.NamedTemporaryFile('w', suffix='.fasta') as fasta_file:
        fasta_file.write(fasta_str)
        fasta_file.seek(0)
        yield fasta_file.name
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
79
80
81
82
83
84
85
86
87
88
    parser.add_argument(
        "--pdb_seqres_database_path",
        type=str,
        default=None,
    )
    parser.add_argument(
        "--uniprot_database_path",
        type=str,
        default=None,
    )
89
90
91
92
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
93
94
    parser.add_argument("--hmmsearch_binary_path", type=str, default="hmmsearch")
    parser.add_argument("--hmmbuild_binary_path", type=str, default="hmmbuild")
95
96
97
98
99
100
101
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
102
    parser.add_argument('--chunk_size', type=int, default=None)
LuGY's avatar
LuGY committed
103
    parser.add_argument('--enable_workflow', default=False, action='store_true', help='run inference with ray workflow or not')
oahzxl's avatar
oahzxl committed
104
    parser.add_argument('--inplace', default=False, action='store_true')
Shenggan's avatar
Shenggan committed
105

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
106

107
108
109
110
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
111
    # init distributed for Dynamic Axial Parallelism
112
    fastfold.distributed.init_dap()
113
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
114
    config = model_config(args.model_name)
115
116
    if args.chunk_size:
        config.globals.chunk_size = args.chunk_size
oahzxl's avatar
oahzxl committed
117
    config.globals.inplace = args.inplace
118
    config.globals.is_multimer = args.model_preset == 'multimer'
Shenggan's avatar
Shenggan committed
119
120
121
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

122
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
123
    model = model.eval()
124
    model = model.cuda()
Shenggan's avatar
Shenggan committed
125

126
127
    set_chunk_size(model.globals.chunk_size)

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
144
145
146
147
148
149
150
151
    if args.model_preset == "multimer":
        inference_multimer_model(args)
    else:
        inference_monomer_model(args)


def inference_multimer_model(args):
    print("running in multimer mode...")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
152
    config = model_config(args.model_name)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
153
154
155
156
157
158
159
160
161
162
163
164
    
    predict_max_templates = 4

    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=predict_max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path,
    )

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
165
    if(not args.use_precomputed_alignments):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
            if args.enable_workflow:
                print("Running alignment with ray workflow...")
                alignment_runner = FastFoldMultimerDataWorkFlow(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hmmsearch_binary_path=args.hmmsearch_binary_path,
                    hmmbuild_binary_path=args.hmmbuild_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    uniprot_database_path=args.uniprot_database_path,
                    pdb_seqres_database_path=args.pdb_seqres_database_path,
                    use_small_bfd=(args.bfd_database_path is None),
                    no_cpus=args.cpus
                )
            else:
                alignment_runner = data_pipeline.AlignmentRunnerMultimer(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hmmsearch_binary_path=args.hmmsearch_binary_path,
                    hmmbuild_binary_path=args.hmmbuild_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    uniprot_database_path=args.uniprot_database_path,
                    pdb_seqres_database_path=args.pdb_seqres_database_path,
                    use_small_bfd=(args.bfd_database_path is None),
                    no_cpus=args.cpus
                )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    else:
        alignment_runner = None

    monomer_data_processor = data_pipeline.DataPipeline(
        template_featurizer=template_featurizer,
    )


    data_processor = data_pipeline.DataPipelineMultimer(
            monomer_data_pipeline=monomer_data_processor,
    )

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    
    feature_processor = feature_pipeline.FeaturePipeline(
        config.data
    )

    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if(not args.use_precomputed_alignments):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    fasta_path = args.fasta_path
    with open(fasta_path, "r") as fp:
        data = fp.read()

    lines = [
        l.replace('\n', '') 
        for prot in data.split('>') for l in prot.strip().split('\n', 1)
    ][1:]
    tags, seqs = lines[::2], lines[1::2]


    for tag, seq in zip(tags, seqs):
        local_alignment_dir = os.path.join(alignment_dir, tag)
        if(args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
242
243
244
            else:
                shutil.rmtree(local_alignment_dir)
                os.makedirs(local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
245
246
247
            
            chain_fasta_str = f'>chain_{tag}\n{seq}\n'
            with temp_fasta_file(chain_fasta_str) as chain_fasta_path:
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
248
249
250
251
252
253
254
255
                if args.enable_workflow:
                    print("Running alignment with ray workflow...")
                    t = time.perf_counter()
                    alignment_runner.run(chain_fasta_path, alignment_dir=local_alignment_dir)
                    print(f"Alignment data workflow time: {time.perf_counter() - t}")
                else:
                    alignment_runner.run(chain_fasta_path, local_alignment_dir)
                
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
256
257
258
259
260
261
262
                print(f"Finished running alignment for {tag}")
                
    local_alignment_dir = alignment_dir

    feature_dict = data_processor.process_fasta(
        fasta_path=fasta_path, alignment_dir=local_alignment_dir
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
263
    # feature_dict = pickle.load(open("/home/lcmql/data/features_pdb1o5d.pkl", "rb"))
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
264
265
266
267

    processed_feature_dict = feature_processor.process_features(
        feature_dict, mode='predict', is_multimer=True,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
268

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
    batch = processed_feature_dict

    manager = mp.Manager()
    result_q = manager.Queue()
    torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))

    out = result_q.get()

    # Toss out the recycling dimensions --- we don't need them anymore
    batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
    
    plddt = out["plddt"]
    mean_plddt = np.mean(plddt)

    plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)

    unrelaxed_protein = protein.from_prediction(features=batch,
                                                result=out,
                                                b_factors=plddt_b_factors)

    # Save the unrelaxed PDB.
    unrelaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_unrelaxed.pdb')
    with open(unrelaxed_output_path, 'w') as f:
        f.write(protein.to_pdb(unrelaxed_protein))

    amber_relaxer = relax.AmberRelaxation(
        use_gpu=True,
        **config.relax,
    )

    # Relax the prediction.
    t = time.perf_counter()
    relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
    print(f"Relaxation time: {time.perf_counter() - t}")

    # Save the relaxed PDB.
    relaxed_output_path = os.path.join(args.output_dir,
                                        f'{tag}_{args.model_name}_relaxed.pdb')
    with open(relaxed_output_path, 'w') as f:
        f.write(relaxed_pdb_str)


Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
312
313
def inference_monomer_model(args):
    print("running in monomer mode...")
314
315
    config = model_config(args.model_name)

Shenggan's avatar
Shenggan committed
316
317
318
319
320
321
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
322
323
        obsolete_pdbs_path=args.obsolete_pdbs_path
    )
Shenggan's avatar
Shenggan committed
324

325
326
327
328
329
330
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
348
349
        fasta = fp.read()
    seqs, tags = parse_fasta(fasta)
Shenggan's avatar
Shenggan committed
350
351

    for tag, seq in zip(tags, seqs):
352
        print(f"tag:{tag}\nseq[{len(seq)}]:{seq}")
353
        batch = [None]
354
355
356
357
358
359
360
        
        fasta_path = os.path.join(args.output_dir, "tmp.fasta")
        with open(fasta_path, "w") as fp:
            fp.write(f">{tag}\n{seq}")

        print("Generating features...")
        local_alignment_dir = os.path.join(alignment_dir, tag)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

        if (args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)
            if args.enable_workflow:
                print("Running alignment with ray workflow...")
                alignment_data_workflow_runner = FastFoldDataWorkFlow(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hhsearch_binary_path=args.hhsearch_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    pdb70_database_path=args.pdb70_database_path,
                    use_small_bfd=use_small_bfd,
                    no_cpus=args.cpus,
                )
                t = time.perf_counter()
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
380
                alignment_data_workflow_runner.run(fasta_path, alignment_dir=local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
                print(f"Alignment data workflow time: {time.perf_counter() - t}")
            else:
                alignment_runner = data_pipeline.AlignmentRunner(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hhsearch_binary_path=args.hhsearch_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    pdb70_database_path=args.pdb70_database_path,
                    use_small_bfd=use_small_bfd,
                    no_cpus=args.cpus,
                )
                alignment_runner.run(fasta_path, local_alignment_dir)
                
        feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                                alignment_dir=local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
399

400
401
        # Remove temporary FASTA file
        os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
402

403
404
405
406
        processed_feature_dict = feature_processor.process_features(
            feature_dict,
            mode='predict',
        )
407

408
        batch = processed_feature_dict
Shenggan's avatar
Shenggan committed
409

410
411
412
        manager = mp.Manager()
        result_q = manager.Queue()
        torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
413

414
        out = result_q.get()
415

416
417
418
419
420
        # Toss out the recycling dimensions --- we don't need them anymore
        batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
        
        plddt = out["plddt"]
        mean_plddt = np.mean(plddt)
Shenggan's avatar
Shenggan committed
421

422
        plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
423

424
425
426
        unrelaxed_protein = protein.from_prediction(features=batch,
                                                    result=out,
                                                    b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
427

428
429
430
431
432
        # Save the unrelaxed PDB.
        unrelaxed_output_path = os.path.join(args.output_dir,
                                                f'{tag}_{args.model_name}_unrelaxed.pdb')
        with open(unrelaxed_output_path, 'w') as f:
            f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
433

434
435
436
437
        amber_relaxer = relax.AmberRelaxation(
            use_gpu=True,
            **config.relax,
        )
Shenggan's avatar
Shenggan committed
438

439
440
441
442
        # Relax the prediction.
        t = time.perf_counter()
        relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
        print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
443

444
445
446
447
448
        # Save the relaxed PDB.
        relaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_relaxed.pdb')
        with open(relaxed_output_path, 'w') as f:
            f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
449

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
450

Shenggan's avatar
Shenggan committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
476
             model_{1-5}_ptm or model_{1-5}_multimer, as defined on the AlphaFold GitHub.""")
Shenggan's avatar
Shenggan committed
477
478
479
480
481
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
482
             ./data/params""")
Shenggan's avatar
Shenggan committed
483
484
485
486
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
487
488
489
490
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
491
492
    parser.add_argument('--preset',
                        type=str,
493
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
494
495
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
496
497
498
499
500
501
502
503
    parser.add_argument(
        "--model_preset",
        type=str,
        default="monomer",
        choices=["monomer", "multimer"],
        help="Choose preset model configuration - the monomer model, the monomer model with "
        "extra ensembling, monomer model with pTM head, or multimer model",
    )
Shenggan's avatar
Shenggan committed
504
505
506
507
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
508
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
509
510

    main(args)