inference.py 20.1 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
22
23
import tempfile
import contextlib
zhuww's avatar
zhuww committed
24
import logging
Shenggan's avatar
Shenggan committed
25
26
27

import numpy as np
import torch
28
import torch.multiprocessing as mp
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
29
import pickle
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
30
import shutil
31
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
32

33
import fastfold
34
35
36
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
37
from fastfold.model.fastnn import set_chunk_size
38
from fastfold.data import data_pipeline, feature_pipeline, templates
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
39
from fastfold.data.tools import hhsearch, hmmsearch
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
40
41
from fastfold.workflow.template import FastFoldDataWorkFlow, FastFoldMultimerDataWorkFlow

42
from fastfold.utils.inject_fastnn import inject_fastnn
43
from fastfold.data.parsers import parse_fasta
44
45
46
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map

zhuww's avatar
zhuww committed
47
48
49
50
logging.basicConfig()
logger = logging.getLogger(__file__)
logger.setLevel(level=logging.INFO)

oahzxl's avatar
oahzxl committed
51
52
53
if int(torch.__version__.split(".")[0]) >= 1 and int(torch.__version__.split(".")[1]) > 11:
    torch.backends.cuda.matmul.allow_tf32 = True

zhuww's avatar
zhuww committed
54
55
56
57
58
59
60
61
62
63
64
65

def seed_torch(seed=1029):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.use_deterministic_algorithms(True)
    
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
66
67
68
69
70
71
@contextlib.contextmanager
def temp_fasta_file(fasta_str: str):
    with tempfile.NamedTemporaryFile('w', suffix='.fasta') as fasta_file:
        fasta_file.write(fasta_str)
        fasta_file.seek(0)
        yield fasta_file.name
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--uniclust30_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
99
100
101
102
103
104
105
106
107
108
    parser.add_argument(
        "--pdb_seqres_database_path",
        type=str,
        default=None,
    )
    parser.add_argument(
        "--uniprot_database_path",
        type=str,
        default=None,
    )
109
110
111
112
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
113
114
    parser.add_argument("--hmmsearch_binary_path", type=str, default="hmmsearch")
    parser.add_argument("--hmmbuild_binary_path", type=str, default="hmmbuild")
115
116
117
118
119
120
121
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
122
    parser.add_argument('--chunk_size', type=int, default=None)
LuGY's avatar
LuGY committed
123
    parser.add_argument('--enable_workflow', default=False, action='store_true', help='run inference with ray workflow or not')
oahzxl's avatar
oahzxl committed
124
    parser.add_argument('--inplace', default=False, action='store_true')
Shenggan's avatar
Shenggan committed
125

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
126

127
128
129
130
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
131
    # init distributed for Dynamic Axial Parallelism
132
    fastfold.distributed.init_dap()
133
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
134
    config = model_config(args.model_name)
135
136
    if args.chunk_size:
        config.globals.chunk_size = args.chunk_size
oahzxl's avatar
oahzxl committed
137
    config.globals.inplace = args.inplace
138
    config.globals.is_multimer = args.model_preset == 'multimer'
Shenggan's avatar
Shenggan committed
139
140
141
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

142
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
143
    model = model.eval()
144
    model = model.cuda()
Shenggan's avatar
Shenggan committed
145

146
147
    set_chunk_size(model.globals.chunk_size)

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
164
165
166
167
168
169
170
171
    if args.model_preset == "multimer":
        inference_multimer_model(args)
    else:
        inference_monomer_model(args)


def inference_multimer_model(args):
    print("running in multimer mode...")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
172
    config = model_config(args.model_name)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
173
174
175
176
177
178
179
180
181
182
183
184
    
    predict_max_templates = 4

    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=predict_max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path,
    )

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
185
    if(not args.use_precomputed_alignments):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
            if args.enable_workflow:
                print("Running alignment with ray workflow...")
                alignment_runner = FastFoldMultimerDataWorkFlow(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hmmsearch_binary_path=args.hmmsearch_binary_path,
                    hmmbuild_binary_path=args.hmmbuild_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    uniprot_database_path=args.uniprot_database_path,
                    pdb_seqres_database_path=args.pdb_seqres_database_path,
                    use_small_bfd=(args.bfd_database_path is None),
                    no_cpus=args.cpus
                )
            else:
                alignment_runner = data_pipeline.AlignmentRunnerMultimer(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hmmsearch_binary_path=args.hmmsearch_binary_path,
                    hmmbuild_binary_path=args.hmmbuild_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
                    uniclust30_database_path=args.uniclust30_database_path,
                    uniprot_database_path=args.uniprot_database_path,
                    pdb_seqres_database_path=args.pdb_seqres_database_path,
                    use_small_bfd=(args.bfd_database_path is None),
                    no_cpus=args.cpus
                )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
    else:
        alignment_runner = None

    monomer_data_processor = data_pipeline.DataPipeline(
        template_featurizer=template_featurizer,
    )


    data_processor = data_pipeline.DataPipelineMultimer(
            monomer_data_pipeline=monomer_data_processor,
    )

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    
    feature_processor = feature_pipeline.FeaturePipeline(
        config.data
    )

    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if(not args.use_precomputed_alignments):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    fasta_path = args.fasta_path
    with open(fasta_path, "r") as fp:
        data = fp.read()

    lines = [
        l.replace('\n', '') 
        for prot in data.split('>') for l in prot.strip().split('\n', 1)
    ][1:]
    tags, seqs = lines[::2], lines[1::2]


    for tag, seq in zip(tags, seqs):
        local_alignment_dir = os.path.join(alignment_dir, tag)
        if(args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
262
263
264
            else:
                shutil.rmtree(local_alignment_dir)
                os.makedirs(local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
265
266
267
            
            chain_fasta_str = f'>chain_{tag}\n{seq}\n'
            with temp_fasta_file(chain_fasta_str) as chain_fasta_path:
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
268
269
270
271
272
273
274
275
                if args.enable_workflow:
                    print("Running alignment with ray workflow...")
                    t = time.perf_counter()
                    alignment_runner.run(chain_fasta_path, alignment_dir=local_alignment_dir)
                    print(f"Alignment data workflow time: {time.perf_counter() - t}")
                else:
                    alignment_runner.run(chain_fasta_path, local_alignment_dir)
                
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
276
277
278
279
280
281
282
                print(f"Finished running alignment for {tag}")
                
    local_alignment_dir = alignment_dir

    feature_dict = data_processor.process_fasta(
        fasta_path=fasta_path, alignment_dir=local_alignment_dir
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
283
    # feature_dict = pickle.load(open("/home/lcmql/data/features_pdb1o5d.pkl", "rb"))
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
284
285
286
287

    processed_feature_dict = feature_processor.process_features(
        feature_dict, mode='predict', is_multimer=True,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
288

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    batch = processed_feature_dict

    manager = mp.Manager()
    result_q = manager.Queue()
    torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))

    out = result_q.get()

    # Toss out the recycling dimensions --- we don't need them anymore
    batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
    
    plddt = out["plddt"]
    mean_plddt = np.mean(plddt)

    plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)

    unrelaxed_protein = protein.from_prediction(features=batch,
                                                result=out,
                                                b_factors=plddt_b_factors)

    # Save the unrelaxed PDB.
    unrelaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_unrelaxed.pdb')
    with open(unrelaxed_output_path, 'w') as f:
        f.write(protein.to_pdb(unrelaxed_protein))

    amber_relaxer = relax.AmberRelaxation(
        use_gpu=True,
        **config.relax,
    )

    # Relax the prediction.
    t = time.perf_counter()
    relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
    print(f"Relaxation time: {time.perf_counter() - t}")

    # Save the relaxed PDB.
    relaxed_output_path = os.path.join(args.output_dir,
                                        f'{tag}_{args.model_name}_relaxed.pdb')
    with open(relaxed_output_path, 'w') as f:
        f.write(relaxed_pdb_str)


Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
332
333
def inference_monomer_model(args):
    print("running in monomer mode...")
334
335
    config = model_config(args.model_name)

Shenggan's avatar
Shenggan committed
336
337
338
339
340
341
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
342
343
        obsolete_pdbs_path=args.obsolete_pdbs_path
    )
Shenggan's avatar
Shenggan committed
344

345
346
347
348
349
350
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
        assert args.uniclust30_database_path is not None
Shenggan's avatar
Shenggan committed
351
352
353
354

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
zhuww's avatar
zhuww committed
355
    
Shenggan's avatar
Shenggan committed
356
357
358
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
zhuww's avatar
zhuww committed
359
360
    # seed_torch(seed=1029)
        
Shenggan's avatar
Shenggan committed
361
362
363
364
365
366
367
368
369
370
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
371
372
        fasta = fp.read()
    seqs, tags = parse_fasta(fasta)
LuGY's avatar
LuGY committed
373
    seq, tag = seqs[0], tags[0]
Shenggan's avatar
Shenggan committed
374

LuGY's avatar
LuGY committed
375
376
377
378
379
380
    print(f"tag:{tag}\nseq[{len(seq)}]:{seq}")
    batch = [None]
    
    fasta_path = os.path.join(args.output_dir, "tmp.fasta")
    with open(fasta_path, "w") as fp:
        fp.write(f">{tag}\n{seq}")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
381

LuGY's avatar
LuGY committed
382
383
    print("Generating features...")
    local_alignment_dir = os.path.join(alignment_dir, tag)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
384

LuGY's avatar
LuGY committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
    if (args.use_precomputed_alignments is None):
        if not os.path.exists(local_alignment_dir):
            os.makedirs(local_alignment_dir)
        if args.enable_workflow:
            print("Running alignment with ray workflow...")
            alignment_data_workflow_runner = FastFoldDataWorkFlow(
                jackhmmer_binary_path=args.jackhmmer_binary_path,
                hhblits_binary_path=args.hhblits_binary_path,
                hhsearch_binary_path=args.hhsearch_binary_path,
                uniref90_database_path=args.uniref90_database_path,
                mgnify_database_path=args.mgnify_database_path,
                bfd_database_path=args.bfd_database_path,
                uniclust30_database_path=args.uniclust30_database_path,
                pdb70_database_path=args.pdb70_database_path,
                use_small_bfd=use_small_bfd,
                no_cpus=args.cpus,
            )
            t = time.perf_counter()
            alignment_data_workflow_runner.run(fasta_path, alignment_dir=local_alignment_dir)
            print(f"Alignment data workflow time: {time.perf_counter() - t}")
        else:
            alignment_runner = data_pipeline.AlignmentRunner(
                jackhmmer_binary_path=args.jackhmmer_binary_path,
                hhblits_binary_path=args.hhblits_binary_path,
                hhsearch_binary_path=args.hhsearch_binary_path,
                uniref90_database_path=args.uniref90_database_path,
                mgnify_database_path=args.mgnify_database_path,
                bfd_database_path=args.bfd_database_path,
                uniclust30_database_path=args.uniclust30_database_path,
                pdb70_database_path=args.pdb70_database_path,
                use_small_bfd=use_small_bfd,
                no_cpus=args.cpus,
            )
            alignment_runner.run(fasta_path, local_alignment_dir)
            
    feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                            alignment_dir=local_alignment_dir)

    # Remove temporary FASTA file
    os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
425

LuGY's avatar
LuGY committed
426
427
428
429
    processed_feature_dict = feature_processor.process_features(
        feature_dict,
        mode='predict',
    )
430

LuGY's avatar
LuGY committed
431
432
433
    batch = processed_feature_dict

    manager = mp.Manager()
zhuww's avatar
zhuww committed
434
    result_q = manager.Queue()                         
LuGY's avatar
LuGY committed
435
    torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
436

LuGY's avatar
LuGY committed
437
    out = result_q.get()
Shenggan's avatar
Shenggan committed
438

LuGY's avatar
LuGY committed
439
440
441
442
443
    # Toss out the recycling dimensions --- we don't need them anymore
    batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
    
    plddt = out["plddt"]
    mean_plddt = np.mean(plddt)
444

LuGY's avatar
LuGY committed
445
    plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
446

LuGY's avatar
LuGY committed
447
448
449
    unrelaxed_protein = protein.from_prediction(features=batch,
                                                result=out,
                                                b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
450

LuGY's avatar
LuGY committed
451
452
453
454
455
    # Save the unrelaxed PDB.
    unrelaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_unrelaxed.pdb')
    with open(unrelaxed_output_path, 'w') as f:
        f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
    # amber_relaxer = relax.AmberRelaxation(
    #     use_gpu=True,
    #     **config.relax,
    # )

    # # Relax the prediction.
    # t = time.perf_counter()
    # relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
    # print(f"Relaxation time: {time.perf_counter() - t}")

    # # Save the relaxed PDB.
    # relaxed_output_path = os.path.join(args.output_dir,
    #                                     f'{tag}_{args.model_name}_relaxed.pdb')
    # with open(relaxed_output_path, 'w') as f:
    #     f.write(relaxed_pdb_str)
zhuww's avatar
zhuww committed
472
473
474
475
476
477
478
479
480
    
    if(args.save_outputs):
            output_dict_path = os.path.join(
                args.output_dir, f'{tag}_{args.model_name}_output_dict.pkl'
            )
            with open(output_dict_path, "wb") as fp:
                pickle.dump(out, fp, protocol=pickle.HIGHEST_PROTOCOL)

            logger.info(f"Model output written to {output_dict_path}...")
Shenggan's avatar
Shenggan committed
481

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
482

Shenggan's avatar
Shenggan committed
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
508
             model_{1-5}_ptm or model_{1-5}_multimer, as defined on the AlphaFold GitHub.""")
Shenggan's avatar
Shenggan committed
509
510
511
512
513
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
514
             ./data/params""")
zhuww's avatar
zhuww committed
515
516
517
518
    parser.add_argument(
        "--save_outputs", action="store_true", default=False,
        help="Whether to save all model outputs, including embeddings, etc."
    )
Shenggan's avatar
Shenggan committed
519
520
521
522
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
523
524
525
526
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
527
528
    parser.add_argument('--preset',
                        type=str,
529
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
530
531
                        choices=('reduced_dbs', 'full_dbs'))
    parser.add_argument('--data_random_seed', type=str, default=None)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
532
533
534
535
536
537
538
539
    parser.add_argument(
        "--model_preset",
        type=str,
        default="monomer",
        choices=["monomer", "multimer"],
        help="Choose preset model configuration - the monomer model, the monomer model with "
        "extra ensembling, monomer model with pTM head, or multimer model",
    )
Shenggan's avatar
Shenggan committed
540
541
542
543
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
544
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
545
546

    main(args)