inference.py 19.5 KB
Newer Older
Shenggan's avatar
Shenggan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2021 AlQuraishi Laboratory
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import random
import sys
import time
21
from datetime import date
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
22
23
import tempfile
import contextlib
Shenggan's avatar
Shenggan committed
24
25
26

import numpy as np
import torch
27
import torch.multiprocessing as mp
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
28
import pickle
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
29
import shutil
30
from fastfold.model.hub import AlphaFold
Shenggan's avatar
Shenggan committed
31

32
import fastfold
33
34
35
import fastfold.relax.relax as relax
from fastfold.common import protein, residue_constants
from fastfold.config import model_config
36
from fastfold.model.fastnn import set_chunk_size
shenggan's avatar
shenggan committed
37
from fastfold.model.nn.triangular_multiplicative_update import set_fused_triangle_multiplication
38
from fastfold.data import data_pipeline, feature_pipeline, templates
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
39
from fastfold.data.tools import hhsearch, hmmsearch
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
40
41
from fastfold.workflow.template import FastFoldDataWorkFlow, FastFoldMultimerDataWorkFlow

42
from fastfold.utils.inject_fastnn import inject_fastnn
43
from fastfold.data.parsers import parse_fasta
44
45
46
from fastfold.utils.import_weights import import_jax_weights_
from fastfold.utils.tensor_utils import tensor_tree_map

oahzxl's avatar
oahzxl committed
47
48
49
if int(torch.__version__.split(".")[0]) >= 1 and int(torch.__version__.split(".")[1]) > 11:
    torch.backends.cuda.matmul.allow_tf32 = True

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
50
51
52
53
54
55
@contextlib.contextmanager
def temp_fasta_file(fasta_str: str):
    with tempfile.NamedTemporaryFile('w', suffix='.fasta') as fasta_file:
        fasta_file.write(fasta_str)
        fasta_file.seek(0)
        yield fasta_file.name
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73

def add_data_args(parser: argparse.ArgumentParser):
    parser.add_argument(
        '--uniref90_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--mgnify_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
        '--pdb70_database_path',
        type=str,
        default=None,
    )
    parser.add_argument(
74
        '--uniref30_database_path',
75
76
77
78
79
80
81
82
        type=str,
        default=None,
    )
    parser.add_argument(
        '--bfd_database_path',
        type=str,
        default=None,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
83
84
85
86
87
88
89
90
91
92
    parser.add_argument(
        "--pdb_seqres_database_path",
        type=str,
        default=None,
    )
    parser.add_argument(
        "--uniprot_database_path",
        type=str,
        default=None,
    )
93
94
95
96
    parser.add_argument('--jackhmmer_binary_path', type=str, default='/usr/bin/jackhmmer')
    parser.add_argument('--hhblits_binary_path', type=str, default='/usr/bin/hhblits')
    parser.add_argument('--hhsearch_binary_path', type=str, default='/usr/bin/hhsearch')
    parser.add_argument('--kalign_binary_path', type=str, default='/usr/bin/kalign')
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
97
98
    parser.add_argument("--hmmsearch_binary_path", type=str, default="hmmsearch")
    parser.add_argument("--hmmbuild_binary_path", type=str, default="hmmbuild")
99
100
101
102
103
104
105
    parser.add_argument(
        '--max_template_date',
        type=str,
        default=date.today().strftime("%Y-%m-%d"),
    )
    parser.add_argument('--obsolete_pdbs_path', type=str, default=None)
    parser.add_argument('--release_dates_path', type=str, default=None)
106
    parser.add_argument('--chunk_size', type=int, default=None)
LuGY's avatar
LuGY committed
107
    parser.add_argument('--enable_workflow', default=False, action='store_true', help='run inference with ray workflow or not')
oahzxl's avatar
oahzxl committed
108
    parser.add_argument('--inplace', default=False, action='store_true')
Shenggan's avatar
Shenggan committed
109

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
110

111
112
113
114
def inference_model(rank, world_size, result_q, batch, args):
    os.environ['RANK'] = str(rank)
    os.environ['LOCAL_RANK'] = str(rank)
    os.environ['WORLD_SIZE'] = str(world_size)
115
    # init distributed for Dynamic Axial Parallelism
116
    fastfold.distributed.init_dap()
117
    torch.cuda.set_device(rank)
Shenggan's avatar
Shenggan committed
118
    config = model_config(args.model_name)
119
120
    if args.chunk_size:
        config.globals.chunk_size = args.chunk_size
shenggan's avatar
shenggan committed
121
122
123
124

    if "v3" in args.param_path:
        set_fused_triangle_multiplication()

oahzxl's avatar
oahzxl committed
125
    config.globals.inplace = args.inplace
126
    config.globals.is_multimer = args.model_preset == 'multimer'
Shenggan's avatar
Shenggan committed
127
128
129
    model = AlphaFold(config)
    import_jax_weights_(model, args.param_path, version=args.model_name)

130
    model = inject_fastnn(model)
Shenggan's avatar
Shenggan committed
131
    model = model.eval()
132
    model = model.cuda()
Shenggan's avatar
Shenggan committed
133

134
135
    set_chunk_size(model.globals.chunk_size)

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    with torch.no_grad():
        batch = {k: torch.as_tensor(v).cuda() for k, v in batch.items()}

        t = time.perf_counter()
        out = model(batch)
        print(f"Inference time: {time.perf_counter() - t}")

    out = tensor_tree_map(lambda x: np.array(x.cpu()), out)

    result_q.put(out)

    torch.distributed.barrier()
    torch.cuda.synchronize()


def main(args):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
152
153
154
155
156
157
158
159
    if args.model_preset == "multimer":
        inference_multimer_model(args)
    else:
        inference_monomer_model(args)


def inference_multimer_model(args):
    print("running in multimer mode...")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
160
    config = model_config(args.model_name)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
161
162
163
164
165
166
167
168
169
170
171
172
    
    predict_max_templates = 4

    template_featurizer = templates.HmmsearchHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=predict_max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
        obsolete_pdbs_path=args.obsolete_pdbs_path,
    )

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
173
    if(not args.use_precomputed_alignments):
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
174
175
176
177
178
179
180
181
182
183
            if args.enable_workflow:
                print("Running alignment with ray workflow...")
                alignment_runner = FastFoldMultimerDataWorkFlow(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hmmsearch_binary_path=args.hmmsearch_binary_path,
                    hmmbuild_binary_path=args.hmmbuild_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
184
                    uniref30_database_path=args.uniref30_database_path,
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
                    uniprot_database_path=args.uniprot_database_path,
                    pdb_seqres_database_path=args.pdb_seqres_database_path,
                    use_small_bfd=(args.bfd_database_path is None),
                    no_cpus=args.cpus
                )
            else:
                alignment_runner = data_pipeline.AlignmentRunnerMultimer(
                    jackhmmer_binary_path=args.jackhmmer_binary_path,
                    hhblits_binary_path=args.hhblits_binary_path,
                    hmmsearch_binary_path=args.hmmsearch_binary_path,
                    hmmbuild_binary_path=args.hmmbuild_binary_path,
                    uniref90_database_path=args.uniref90_database_path,
                    mgnify_database_path=args.mgnify_database_path,
                    bfd_database_path=args.bfd_database_path,
199
                    uniref30_database_path=args.uniref30_database_path,
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
200
201
202
203
204
                    uniprot_database_path=args.uniprot_database_path,
                    pdb_seqres_database_path=args.pdb_seqres_database_path,
                    use_small_bfd=(args.bfd_database_path is None),
                    no_cpus=args.cpus
                )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    else:
        alignment_runner = None

    monomer_data_processor = data_pipeline.DataPipeline(
        template_featurizer=template_featurizer,
    )


    data_processor = data_pipeline.DataPipelineMultimer(
            monomer_data_pipeline=monomer_data_processor,
    )

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    
    feature_processor = feature_pipeline.FeaturePipeline(
        config.data
    )

    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if(not args.use_precomputed_alignments):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    fasta_path = args.fasta_path
    with open(fasta_path, "r") as fp:
        data = fp.read()

    lines = [
        l.replace('\n', '') 
        for prot in data.split('>') for l in prot.strip().split('\n', 1)
    ][1:]
    tags, seqs = lines[::2], lines[1::2]

244
    output_prefix = "_and_".join(tags)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
245
246
247
248
249
    for tag, seq in zip(tags, seqs):
        local_alignment_dir = os.path.join(alignment_dir, tag)
        if(args.use_precomputed_alignments is None):
            if not os.path.exists(local_alignment_dir):
                os.makedirs(local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
250
251
252
            else:
                shutil.rmtree(local_alignment_dir)
                os.makedirs(local_alignment_dir)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
253
254
255
            
            chain_fasta_str = f'>chain_{tag}\n{seq}\n'
            with temp_fasta_file(chain_fasta_str) as chain_fasta_path:
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
256
257
258
259
260
261
262
263
                if args.enable_workflow:
                    print("Running alignment with ray workflow...")
                    t = time.perf_counter()
                    alignment_runner.run(chain_fasta_path, alignment_dir=local_alignment_dir)
                    print(f"Alignment data workflow time: {time.perf_counter() - t}")
                else:
                    alignment_runner.run(chain_fasta_path, local_alignment_dir)
                
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
264
265
266
267
268
269
270
                print(f"Finished running alignment for {tag}")
                
    local_alignment_dir = alignment_dir

    feature_dict = data_processor.process_fasta(
        fasta_path=fasta_path, alignment_dir=local_alignment_dir
    )
271
    
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
272
273
274
    processed_feature_dict = feature_processor.process_features(
        feature_dict, mode='predict', is_multimer=True,
    )
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
275

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
276
277
278
279
280
281
282
283
    batch = processed_feature_dict

    manager = mp.Manager()
    result_q = manager.Queue()
    torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))

    out = result_q.get()

284
285
286
287
288
289
290
    if args.save_prediction_result:
        # Save the prediction result .pkl
        prediction_result_path = os.path.join(args.output_dir,
            f'{output_prefix}_{args.model_name}.pkl')
        with open(prediction_result_path, 'wb') as f:
            pickle.dump(out, f)

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    # Toss out the recycling dimensions --- we don't need them anymore
    batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
    
    plddt = out["plddt"]
    mean_plddt = np.mean(plddt)

    plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)

    unrelaxed_protein = protein.from_prediction(features=batch,
                                                result=out,
                                                b_factors=plddt_b_factors)

    # Save the unrelaxed PDB.
    unrelaxed_output_path = os.path.join(args.output_dir,
305
        f'{output_prefix}_{args.model_name}_unrelaxed.pdb')
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    with open(unrelaxed_output_path, 'w') as f:
        f.write(protein.to_pdb(unrelaxed_protein))

    amber_relaxer = relax.AmberRelaxation(
        use_gpu=True,
        **config.relax,
    )

    # Relax the prediction.
    t = time.perf_counter()
    relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
    print(f"Relaxation time: {time.perf_counter() - t}")

    # Save the relaxed PDB.
    relaxed_output_path = os.path.join(args.output_dir,
321
        f'{output_prefix}_{args.model_name}_relaxed.pdb')
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
322
323
324
325
    with open(relaxed_output_path, 'w') as f:
        f.write(relaxed_pdb_str)


Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
326
327
def inference_monomer_model(args):
    print("running in monomer mode...")
328
329
    config = model_config(args.model_name)

Shenggan's avatar
Shenggan committed
330
331
332
333
334
335
    template_featurizer = templates.TemplateHitFeaturizer(
        mmcif_dir=args.template_mmcif_dir,
        max_template_date=args.max_template_date,
        max_hits=config.data.predict.max_templates,
        kalign_binary_path=args.kalign_binary_path,
        release_dates_path=args.release_dates_path,
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
336
337
        obsolete_pdbs_path=args.obsolete_pdbs_path
    )
Shenggan's avatar
Shenggan committed
338

339
340
341
342
343
    use_small_bfd = args.preset == 'reduced_dbs'  # (args.bfd_database_path is None)
    if use_small_bfd:
        assert args.bfd_database_path is not None
    else:
        assert args.bfd_database_path is not None
344
        assert args.uniref30_database_path is not None
Shenggan's avatar
Shenggan committed
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361

    data_processor = data_pipeline.DataPipeline(template_featurizer=template_featurizer,)

    output_dir_base = args.output_dir
    random_seed = args.data_random_seed
    if random_seed is None:
        random_seed = random.randrange(sys.maxsize)
    feature_processor = feature_pipeline.FeaturePipeline(config.data)
    if not os.path.exists(output_dir_base):
        os.makedirs(output_dir_base)
    if (args.use_precomputed_alignments is None):
        alignment_dir = os.path.join(output_dir_base, "alignments")
    else:
        alignment_dir = args.use_precomputed_alignments

    # Gather input sequences
    with open(args.fasta_path, "r") as fp:
362
363
        fasta = fp.read()
    seqs, tags = parse_fasta(fasta)
LuGY's avatar
LuGY committed
364
    seq, tag = seqs[0], tags[0]
Shenggan's avatar
Shenggan committed
365

LuGY's avatar
LuGY committed
366
367
368
369
370
371
    print(f"tag:{tag}\nseq[{len(seq)}]:{seq}")
    batch = [None]
    
    fasta_path = os.path.join(args.output_dir, "tmp.fasta")
    with open(fasta_path, "w") as fp:
        fp.write(f">{tag}\n{seq}")
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
372

LuGY's avatar
LuGY committed
373
374
    print("Generating features...")
    local_alignment_dir = os.path.join(alignment_dir, tag)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
375

LuGY's avatar
LuGY committed
376
377
378
379
380
381
382
383
384
385
386
387
    if (args.use_precomputed_alignments is None):
        if not os.path.exists(local_alignment_dir):
            os.makedirs(local_alignment_dir)
        if args.enable_workflow:
            print("Running alignment with ray workflow...")
            alignment_data_workflow_runner = FastFoldDataWorkFlow(
                jackhmmer_binary_path=args.jackhmmer_binary_path,
                hhblits_binary_path=args.hhblits_binary_path,
                hhsearch_binary_path=args.hhsearch_binary_path,
                uniref90_database_path=args.uniref90_database_path,
                mgnify_database_path=args.mgnify_database_path,
                bfd_database_path=args.bfd_database_path,
388
                uniref30_database_path=args.uniref30_database_path,
LuGY's avatar
LuGY committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
                pdb70_database_path=args.pdb70_database_path,
                use_small_bfd=use_small_bfd,
                no_cpus=args.cpus,
            )
            t = time.perf_counter()
            alignment_data_workflow_runner.run(fasta_path, alignment_dir=local_alignment_dir)
            print(f"Alignment data workflow time: {time.perf_counter() - t}")
        else:
            alignment_runner = data_pipeline.AlignmentRunner(
                jackhmmer_binary_path=args.jackhmmer_binary_path,
                hhblits_binary_path=args.hhblits_binary_path,
                hhsearch_binary_path=args.hhsearch_binary_path,
                uniref90_database_path=args.uniref90_database_path,
                mgnify_database_path=args.mgnify_database_path,
                bfd_database_path=args.bfd_database_path,
404
                uniref30_database_path=args.uniref30_database_path,
LuGY's avatar
LuGY committed
405
406
407
408
409
410
411
412
413
414
415
                pdb70_database_path=args.pdb70_database_path,
                use_small_bfd=use_small_bfd,
                no_cpus=args.cpus,
            )
            alignment_runner.run(fasta_path, local_alignment_dir)
            
    feature_dict = data_processor.process_fasta(fasta_path=fasta_path,
                                            alignment_dir=local_alignment_dir)

    # Remove temporary FASTA file
    os.remove(fasta_path)
Shenggan's avatar
Shenggan committed
416

LuGY's avatar
LuGY committed
417
418
419
420
    processed_feature_dict = feature_processor.process_features(
        feature_dict,
        mode='predict',
    )
421

LuGY's avatar
LuGY committed
422
423
424
425
426
    batch = processed_feature_dict

    manager = mp.Manager()
    result_q = manager.Queue()
    torch.multiprocessing.spawn(inference_model, nprocs=args.gpus, args=(args.gpus, result_q, batch, args))
Shenggan's avatar
Shenggan committed
427

LuGY's avatar
LuGY committed
428
    out = result_q.get()
Shenggan's avatar
Shenggan committed
429

LuGY's avatar
LuGY committed
430
431
432
433
434
    # Toss out the recycling dimensions --- we don't need them anymore
    batch = tensor_tree_map(lambda x: np.array(x[..., -1].cpu()), batch)
    
    plddt = out["plddt"]
    mean_plddt = np.mean(plddt)
435

LuGY's avatar
LuGY committed
436
    plddt_b_factors = np.repeat(plddt[..., None], residue_constants.atom_type_num, axis=-1)
Shenggan's avatar
Shenggan committed
437

LuGY's avatar
LuGY committed
438
439
440
    unrelaxed_protein = protein.from_prediction(features=batch,
                                                result=out,
                                                b_factors=plddt_b_factors)
Shenggan's avatar
Shenggan committed
441

LuGY's avatar
LuGY committed
442
443
444
445
446
    # Save the unrelaxed PDB.
    unrelaxed_output_path = os.path.join(args.output_dir,
                                            f'{tag}_{args.model_name}_unrelaxed.pdb')
    with open(unrelaxed_output_path, 'w') as f:
        f.write(protein.to_pdb(unrelaxed_protein))
Shenggan's avatar
Shenggan committed
447

LuGY's avatar
LuGY committed
448
449
450
451
    amber_relaxer = relax.AmberRelaxation(
        use_gpu=True,
        **config.relax,
    )
Shenggan's avatar
Shenggan committed
452

LuGY's avatar
LuGY committed
453
454
455
456
    # Relax the prediction.
    t = time.perf_counter()
    relaxed_pdb_str, _, _ = amber_relaxer.process(prot=unrelaxed_protein)
    print(f"Relaxation time: {time.perf_counter() - t}")
Shenggan's avatar
Shenggan committed
457

LuGY's avatar
LuGY committed
458
459
460
461
462
    # Save the relaxed PDB.
    relaxed_output_path = os.path.join(args.output_dir,
                                        f'{tag}_{args.model_name}_relaxed.pdb')
    with open(relaxed_output_path, 'w') as f:
        f.write(relaxed_pdb_str)
Shenggan's avatar
Shenggan committed
463

Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
464

Shenggan's avatar
Shenggan committed
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "fasta_path",
        type=str,
    )
    parser.add_argument(
        "template_mmcif_dir",
        type=str,
    )
    parser.add_argument("--use_precomputed_alignments",
                        type=str,
                        default=None,
                        help="""Path to alignment directory. If provided, alignment computation 
                is skipped and database path arguments are ignored.""")
    parser.add_argument(
        "--output_dir",
        type=str,
        default=os.getcwd(),
        help="""Name of the directory in which to output the prediction""",
    )
    parser.add_argument("--model_name",
                        type=str,
                        default="model_1",
                        help="""Name of a model config. Choose one of model_{1-5} or 
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
490
             model_{1-5}_ptm or model_{1-5}_multimer, as defined on the AlphaFold GitHub.""")
Shenggan's avatar
Shenggan committed
491
492
493
494
495
    parser.add_argument("--param_path",
                        type=str,
                        default=None,
                        help="""Path to model parameters. If None, parameters are selected
             automatically according to the model name from 
496
             ./data/params""")
Shenggan's avatar
Shenggan committed
497
498
499
500
    parser.add_argument("--cpus",
                        type=int,
                        default=12,
                        help="""Number of CPUs with which to run alignment tools""")
501
502
503
504
    parser.add_argument("--gpus",
                        type=int,
                        default=1,
                        help="""Number of GPUs with which to run inference""")
Shenggan's avatar
Shenggan committed
505
506
    parser.add_argument('--preset',
                        type=str,
507
                        default='full_dbs',
Shenggan's avatar
Shenggan committed
508
                        choices=('reduced_dbs', 'full_dbs'))
509
510
511
    parser.add_argument('--save_prediction_result',
                        type=bool,
                        default=True)
Shenggan's avatar
Shenggan committed
512
    parser.add_argument('--data_random_seed', type=str, default=None)
Fazzie-Maqianli's avatar
Fazzie-Maqianli committed
513
514
515
516
517
518
519
520
    parser.add_argument(
        "--model_preset",
        type=str,
        default="monomer",
        choices=["monomer", "multimer"],
        help="Choose preset model configuration - the monomer model, the monomer model with "
        "extra ensembling, monomer model with pTM head, or multimer model",
    )
Shenggan's avatar
Shenggan committed
521
522
523
524
    add_data_args(parser)
    args = parser.parse_args()

    if (args.param_path is None):
525
        args.param_path = os.path.join("data", "params", "params_" + args.model_name + ".npz")
Shenggan's avatar
Shenggan committed
526
527

    main(args)