interactive.py 5.89 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Louis Martin's avatar
Louis Martin committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8
9
10
"""
Translate raw text with a trained model. Batches data on-the-fly.
"""
Myle Ott's avatar
Myle Ott committed
11

Myle Ott's avatar
Myle Ott committed
12
from collections import namedtuple
13
import fileinput
Louis Martin's avatar
Louis Martin committed
14
import sys
Myle Ott's avatar
Myle Ott committed
15

Louis Martin's avatar
Louis Martin committed
16
17
import torch

Myle Ott's avatar
Myle Ott committed
18
from fairseq import checkpoint_utils, options, tasks, utils
Louis Martin's avatar
Louis Martin committed
19
from fairseq.sequence_generator import SequenceGenerator
Myle Ott's avatar
Myle Ott committed
20

Myle Ott's avatar
Myle Ott committed
21
Batch = namedtuple('Batch', 'ids src_tokens src_lengths')
22
Translation = namedtuple('Translation', 'src_str hypos pos_scores alignments')
23
24


25
def buffered_read(input, buffer_size):
26
    buffer = []
Myle Ott's avatar
Myle Ott committed
27
28
29
30
31
32
    with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h:
        for src_str in h:
            buffer.append(src_str.strip())
            if len(buffer) >= buffer_size:
                yield buffer
                buffer = []
33
34
35
36
37

    if len(buffer) > 0:
        yield buffer


38
def make_batches(lines, args, task, max_positions):
Myle Ott's avatar
Myle Ott committed
39
    tokens = [
40
        task.source_dictionary.encode_line(src_str, add_if_not_exist=False).long()
Myle Ott's avatar
Myle Ott committed
41
42
        for src_str in lines
    ]
Myle Ott's avatar
Myle Ott committed
43
    lengths = torch.LongTensor([t.numel() for t in tokens])
44
    itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
45
        dataset=task.build_dataset_for_inference(tokens, lengths),
Myle Ott's avatar
Myle Ott committed
46
47
48
49
50
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=max_positions,
    ).next_epoch_itr(shuffle=False)
    for batch in itr:
51
        yield Batch(
Myle Ott's avatar
Myle Ott committed
52
53
54
            ids=batch['id'],
            src_tokens=batch['net_input']['src_tokens'], src_lengths=batch['net_input']['src_lengths'],
        )
55

Louis Martin's avatar
Louis Martin committed
56

Myle Ott's avatar
Myle Ott committed
57
def main(args):
Myle Ott's avatar
Myle Ott committed
58
    utils.import_user_module(args)
59

Myle Ott's avatar
Myle Ott committed
60
61
62
63
64
    if args.buffer_size < 1:
        args.buffer_size = 1
    if args.max_tokens is None and args.max_sentences is None:
        args.max_sentences = 1

Myle Ott's avatar
Myle Ott committed
65
66
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
67
68
69
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

Myle Ott's avatar
Myle Ott committed
70
    print(args)
Louis Martin's avatar
Louis Martin committed
71
72
73

    use_cuda = torch.cuda.is_available() and not args.cpu

Myle Ott's avatar
Myle Ott committed
74
75
76
    # Setup task, e.g., translation
    task = tasks.setup_task(args)

Louis Martin's avatar
Louis Martin committed
77
    # Load ensemble
78
    print('| loading model(s) from {}'.format(args.path))
Myle Ott's avatar
Myle Ott committed
79
80
81
82
    models, _model_args = checkpoint_utils.load_model_ensemble(
        args.path.split(':'),
        arg_overrides=eval(args.model_overrides),
        task=task,
Myle Ott's avatar
Myle Ott committed
83
    )
Louis Martin's avatar
Louis Martin committed
84

Myle Ott's avatar
Myle Ott committed
85
    # Set dictionaries
Myle Ott's avatar
Myle Ott committed
86
    src_dict = task.source_dictionary
Myle Ott's avatar
Myle Ott committed
87
    tgt_dict = task.target_dictionary
Louis Martin's avatar
Louis Martin committed
88
89
90

    # Optimize ensemble for generation
    for model in models:
Myle Ott's avatar
Myle Ott committed
91
92
93
94
        model.make_generation_fast_(
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
            need_attn=args.print_alignment,
        )
Myle Ott's avatar
Myle Ott committed
95
96
        if args.fp16:
            model.half()
Myle Ott's avatar
Myle Ott committed
97
98
        if use_cuda:
            model.cuda()
Louis Martin's avatar
Louis Martin committed
99
100

    # Initialize generator
Myle Ott's avatar
Myle Ott committed
101
    generator = task.build_generator(args)
Louis Martin's avatar
Louis Martin committed
102
103
104
105
106

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

107
108
109
110
111
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        *[model.max_positions() for model in models]
    )

112
113
114
    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    print('| Type the input sentence and press return:')
Myle Ott's avatar
Myle Ott committed
115
    start_id = 0
116
    for inputs in buffered_read(args.input, args.buffer_size):
117
        results = []
Myle Ott's avatar
Myle Ott committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        for batch in make_batches(inputs, args, task, max_positions):
            src_tokens = batch.src_tokens
            src_lengths = batch.src_lengths
            if use_cuda:
                src_tokens = src_tokens.cuda()
                src_lengths = src_lengths.cuda()

            sample = {
                'net_input': {
                    'src_tokens': src_tokens,
                    'src_lengths': src_lengths,
                },
            }
            translations = task.inference_step(generator, models, sample)
            for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
                src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
                results.append((start_id + id, src_tokens_i, hypos))

        # sort output to match input order
        for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
138
139
140
            if src_dict is not None:
                src_str = src_dict.string(src_tokens, args.remove_bpe)
                print('S-{}\t{}'.format(id, src_str))
Myle Ott's avatar
Myle Ott committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

            # Process top predictions
            for hypo in hypos[:min(len(hypos), args.nbest)]:
                hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                    hypo_tokens=hypo['tokens'].int().cpu(),
                    src_str=src_str,
                    alignment=hypo['alignment'].int().cpu() if hypo['alignment'] is not None else None,
                    align_dict=align_dict,
                    tgt_dict=tgt_dict,
                    remove_bpe=args.remove_bpe,
                )
                print('H-{}\t{}\t{}'.format(id, hypo['score'], hypo_str))
                print('P-{}\t{}'.format(
                    id,
                    ' '.join(map(lambda x: '{:.4f}'.format(x), hypo['positional_scores'].tolist()))
                ))
                if args.print_alignment:
                    print('A-{}\t{}'.format(
                        id,
                        ' '.join(map(lambda x: str(utils.item(x)), alignment))
                    ))

        # update running id counter
164
        start_id += len(inputs)
Louis Martin's avatar
Louis Martin committed
165

Myle Ott's avatar
Myle Ott committed
166

Myle Ott's avatar
Myle Ott committed
167
def cli_main():
168
    parser = options.get_generation_parser(interactive=True)
169
    args = options.parse_args_and_arch(parser)
Myle Ott's avatar
Myle Ott committed
170
    main(args)
Myle Ott's avatar
Myle Ott committed
171
172
173
174


if __name__ == '__main__':
    cli_main()