interactive.py 3.13 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Louis Martin's avatar
Louis Martin committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8

Louis Martin's avatar
Louis Martin committed
9
10
11
12
import sys
import torch
from torch.autograd import Variable

Myle Ott's avatar
Myle Ott committed
13
from fairseq import options, tokenizer, utils
Louis Martin's avatar
Louis Martin committed
14
15
16
from fairseq.sequence_generator import SequenceGenerator


Myle Ott's avatar
Myle Ott committed
17
def main(args):
Louis Martin's avatar
Louis Martin committed
18
    print(args)
Myle Ott's avatar
Myle Ott committed
19
20
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
21
22
    assert not args.max_sentences, \
        '--max-sentences/--batch-size is not supported in interactive mode'
Louis Martin's avatar
Louis Martin committed
23
24
25
26
27

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load ensemble
    print('| loading model(s) from {}'.format(', '.join(args.path)))
Myle Ott's avatar
Myle Ott committed
28
29
    models, model_args = utils.load_ensemble_for_inference(args.path, data_dir=args.data)
    src_dict, dst_dict = models[0].src_dict, models[0].dst_dict
Louis Martin's avatar
Louis Martin committed
30

Myle Ott's avatar
Myle Ott committed
31
32
    print('| [{}] dictionary: {} types'.format(model_args.source_lang, len(src_dict)))
    print('| [{}] dictionary: {} types'.format(model_args.target_lang, len(dst_dict)))
Louis Martin's avatar
Louis Martin committed
33
34
35
36

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
Myle Ott's avatar
Myle Ott committed
37
38
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
        )
Louis Martin's avatar
Louis Martin committed
39
40
41
42
43

    # Initialize generator
    translator = SequenceGenerator(
        models, beam_size=args.beam, stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
44
        unk_penalty=args.unkpen, sampling=args.sampling)
Louis Martin's avatar
Louis Martin committed
45
46
47
48
49
50
51
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

52
    print('| Type the input sentence and press return:')
Louis Martin's avatar
Louis Martin committed
53
54
    for src_str in sys.stdin:
        src_str = src_str.strip()
Myle Ott's avatar
Myle Ott committed
55
        src_tokens = tokenizer.Tokenizer.tokenize(src_str, src_dict, add_if_not_exist=False).long()
Louis Martin's avatar
Louis Martin committed
56
57
        if use_cuda:
            src_tokens = src_tokens.cuda()
Myle Ott's avatar
Myle Ott committed
58
59
60
61
62
        src_lengths = src_tokens.new([src_tokens.numel()])
        translations = translator.generate(
            Variable(src_tokens.view(1, -1)),
            Variable(src_lengths.view(-1)),
        )
Louis Martin's avatar
Louis Martin committed
63
64
65
66
67
68
69
70
71
72
        hypos = translations[0]
        print('O\t{}'.format(src_str))

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu(),
                align_dict=align_dict,
Myle Ott's avatar
Myle Ott committed
73
                dst_dict=dst_dict,
Myle Ott's avatar
Myle Ott committed
74
75
                remove_bpe=args.remove_bpe,
            )
Louis Martin's avatar
Louis Martin committed
76
            print('H\t{}\t{}'.format(hypo['score'], hypo_str))
77
            print('A\t{}'.format(' '.join(map(lambda x: str(utils.item(x)), alignment))))
Louis Martin's avatar
Louis Martin committed
78

Myle Ott's avatar
Myle Ott committed
79

Louis Martin's avatar
Louis Martin committed
80
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
81
82
83
    parser = options.get_generation_parser()
    args = parser.parse_args()
    main(args)