interactive.py 2.86 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Louis Martin's avatar
Louis Martin committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8

Louis Martin's avatar
Louis Martin committed
9
10
11
12
import sys
import torch
from torch.autograd import Variable

Myle Ott's avatar
Myle Ott committed
13
from fairseq import options, tokenizer, utils
Louis Martin's avatar
Louis Martin committed
14
15
16
from fairseq.sequence_generator import SequenceGenerator


Myle Ott's avatar
Myle Ott committed
17
def main(args):
Louis Martin's avatar
Louis Martin committed
18
19
20
21
22
23
    print(args)

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load ensemble
    print('| loading model(s) from {}'.format(', '.join(args.path)))
Myle Ott's avatar
Myle Ott committed
24
25
    models, model_args = utils.load_ensemble_for_inference(args.path, data_dir=args.data)
    src_dict, dst_dict = models[0].src_dict, models[0].dst_dict
Louis Martin's avatar
Louis Martin committed
26

Myle Ott's avatar
Myle Ott committed
27
28
    print('| [{}] dictionary: {} types'.format(model_args.source_lang, len(src_dict)))
    print('| [{}] dictionary: {} types'.format(model_args.target_lang, len(dst_dict)))
Louis Martin's avatar
Louis Martin committed
29
30
31
32

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
Myle Ott's avatar
Myle Ott committed
33
34
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
        )
Louis Martin's avatar
Louis Martin committed
35
36
37
38
39
40
41
42
43
44
45
46
47

    # Initialize generator
    translator = SequenceGenerator(
        models, beam_size=args.beam, stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
        unk_penalty=args.unkpen)
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

48
    print('| Type the input sentence and press return:')
Louis Martin's avatar
Louis Martin committed
49
50
    for src_str in sys.stdin:
        src_str = src_str.strip()
Myle Ott's avatar
Myle Ott committed
51
        src_tokens = tokenizer.Tokenizer.tokenize(src_str, src_dict, add_if_not_exist=False).long()
Louis Martin's avatar
Louis Martin committed
52
53
        if use_cuda:
            src_tokens = src_tokens.cuda()
Myle Ott's avatar
Myle Ott committed
54
55
56
57
58
        src_lengths = src_tokens.new([src_tokens.numel()])
        translations = translator.generate(
            Variable(src_tokens.view(1, -1)),
            Variable(src_lengths.view(-1)),
        )
Louis Martin's avatar
Louis Martin committed
59
60
61
62
63
64
65
66
67
68
        hypos = translations[0]
        print('O\t{}'.format(src_str))

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu(),
                align_dict=align_dict,
Myle Ott's avatar
Myle Ott committed
69
                dst_dict=dst_dict,
Myle Ott's avatar
Myle Ott committed
70
71
                remove_bpe=args.remove_bpe,
            )
Louis Martin's avatar
Louis Martin committed
72
            print('H\t{}\t{}'.format(hypo['score'], hypo_str))
73
            print('A\t{}'.format(' '.join(map(str, alignment))))
Louis Martin's avatar
Louis Martin committed
74

Myle Ott's avatar
Myle Ott committed
75

Louis Martin's avatar
Louis Martin committed
76
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
77
78
79
    parser = options.get_generation_parser()
    args = parser.parse_args()
    main(args)