interactive.py 5.29 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Louis Martin's avatar
Louis Martin committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8

9
import numpy as np
Louis Martin's avatar
Louis Martin committed
10
11
import sys
import torch
12
from collections import namedtuple
Louis Martin's avatar
Louis Martin committed
13
14
from torch.autograd import Variable

Myle Ott's avatar
Myle Ott committed
15
from fairseq import options, tokenizer, utils
alexeib's avatar
alexeib committed
16
17
from fairseq.data.data_utils import collate_tokens
from fairseq.data.consts import LEFT_PAD_SOURCE
Louis Martin's avatar
Louis Martin committed
18
19
from fairseq.sequence_generator import SequenceGenerator

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
Batch = namedtuple('Batch', 'srcs tokens lengths')
Translation = namedtuple('Translation', 'src_str hypos alignments')


def buffered_read(buffer_size):
    buffer = []
    for src_str in sys.stdin:
        buffer.append(src_str.strip())
        if len(buffer) >= buffer_size:
            yield buffer
            buffer = []

    if len(buffer) > 0:
        yield buffer


def make_batches(lines, batch_size, src_dict):
    tokens = [tokenizer.Tokenizer.tokenize(src_str, src_dict, add_if_not_exist=False).long() for src_str in lines]
    lengths = [t.numel() for t in tokens]

    indices = np.argsort(lengths)
    num_batches = np.ceil(len(indices) / batch_size)
    batches = np.array_split(indices, num_batches)
    for batch_idxs in batches:
        batch_toks = [tokens[i] for i in batch_idxs]
alexeib's avatar
alexeib committed
45
46
        batch_toks = collate_tokens(batch_toks, src_dict.pad(), src_dict.eos(), LEFT_PAD_SOURCE,
                                    move_eos_to_beginning=False)
47
48
49
50
51
52
        yield Batch(
            srcs=[lines[i] for i in batch_idxs],
            tokens=batch_toks,
            lengths=tokens[0].new([lengths[i] for i in batch_idxs]),
        ), batch_idxs

Louis Martin's avatar
Louis Martin committed
53

Myle Ott's avatar
Myle Ott committed
54
def main(args):
Louis Martin's avatar
Louis Martin committed
55
    print(args)
Myle Ott's avatar
Myle Ott committed
56
57
    assert not args.sampling or args.nbest == args.beam, \
        '--sampling requires --nbest to be equal to --beam'
58
59
60
61
62
    assert not args.max_sentences or args.max_sentences <= args.buffer_size, \
        '--max-sentences/--batch-size cannot be larger than --buffer-size'

    if args.buffer_size < 1:
        args.buffer_size = 1
Louis Martin's avatar
Louis Martin committed
63
64
65
66
67

    use_cuda = torch.cuda.is_available() and not args.cpu

    # Load ensemble
    print('| loading model(s) from {}'.format(', '.join(args.path)))
Myle Ott's avatar
Myle Ott committed
68
69
    models, model_args = utils.load_ensemble_for_inference(args.path, data_dir=args.data)
    src_dict, dst_dict = models[0].src_dict, models[0].dst_dict
Louis Martin's avatar
Louis Martin committed
70

Myle Ott's avatar
Myle Ott committed
71
72
    print('| [{}] dictionary: {} types'.format(model_args.source_lang, len(src_dict)))
    print('| [{}] dictionary: {} types'.format(model_args.target_lang, len(dst_dict)))
Louis Martin's avatar
Louis Martin committed
73
74
75
76

    # Optimize ensemble for generation
    for model in models:
        model.make_generation_fast_(
Myle Ott's avatar
Myle Ott committed
77
78
            beamable_mm_beam_size=None if args.no_beamable_mm else args.beam,
        )
Louis Martin's avatar
Louis Martin committed
79
80
81
82
83

    # Initialize generator
    translator = SequenceGenerator(
        models, beam_size=args.beam, stop_early=(not args.no_early_stop),
        normalize_scores=(not args.unnormalized), len_penalty=args.lenpen,
84
        unk_penalty=args.unkpen, sampling=args.sampling)
Louis Martin's avatar
Louis Martin committed
85
86
87
88
89
90
91
    if use_cuda:
        translator.cuda()

    # Load alignment dictionary for unknown word replacement
    # (None if no unknown word replacement, empty if no path to align dictionary)
    align_dict = utils.load_align_dict(args.replace_unk)

92
93
94
95
96
    def make_result(src_str, hypos):
        result = Translation(
            src_str='O\t{}'.format(src_str),
            hypos=[],
            alignments=[],
Myle Ott's avatar
Myle Ott committed
97
        )
Louis Martin's avatar
Louis Martin committed
98
99
100
101
102
103
104
105

        # Process top predictions
        for hypo in hypos[:min(len(hypos), args.nbest)]:
            hypo_tokens, hypo_str, alignment = utils.post_process_prediction(
                hypo_tokens=hypo['tokens'].int().cpu(),
                src_str=src_str,
                alignment=hypo['alignment'].int().cpu(),
                align_dict=align_dict,
Myle Ott's avatar
Myle Ott committed
106
                dst_dict=dst_dict,
Myle Ott's avatar
Myle Ott committed
107
108
                remove_bpe=args.remove_bpe,
            )
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
            result.hypos.append('H\t{}\t{}'.format(hypo['score'], hypo_str))
            result.alignments.append('A\t{}'.format(' '.join(map(lambda x: str(utils.item(x)), alignment))))
        return result

    def process_batch(batch):
        tokens = batch.tokens
        lengths = batch.lengths

        if use_cuda:
            tokens = tokens.cuda()
            lengths = lengths.cuda()

        translations = translator.generate(
            Variable(tokens),
            Variable(lengths),
            maxlen=int(args.max_len_a * tokens.size(1) + args.max_len_b),
        )

        return [make_result(batch.srcs[i], t) for i, t in enumerate(translations)]

    if args.buffer_size > 1:
        print('| Sentence buffer size:', args.buffer_size)
    print('| Type the input sentence and press return:')
    for inputs in buffered_read(args.buffer_size):
        indices = []
        results = []
        for batch, batch_indices in make_batches(inputs, max(1, args.max_sentences or 1), src_dict):
            indices.extend(batch_indices)
            results += process_batch(batch)

        for i in np.argsort(indices):
            result = results[i]
            print(result.src_str)
            for hypo, align in zip(result.hypos, result.alignments):
                print(hypo)
                print(align)
Louis Martin's avatar
Louis Martin committed
145

Myle Ott's avatar
Myle Ott committed
146

Louis Martin's avatar
Louis Martin committed
147
if __name__ == '__main__':
148
    parser = options.get_generation_parser(interactive=True)
Myle Ott's avatar
Myle Ott committed
149
150
    args = parser.parse_args()
    main(args)